
Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 179

Punjabi DeConverter for generating Punjabi from

Universal Networking Language

Parteek KUMAR1, Rajendra Kumar SHARMA2

(1Department of Computer Science & Engineering, Thapar University, Patiala 147004, India)

(2School of Mathematics & Computer Applications, Thapar University, Patiala 147004, India)

E-mail: {parteek.bhatia, rksharma}@thapar.edu

Received Mar. 11, 2012; Revision accepted Jan. 13, 2013; Crosschecked Feb. 22, 2013

Abstract: DeConverter is core software in a Universal Networking Language (UNL) system. A UNL system has EnConverter
and DeConverter as its two major components. EnConverter is used to convert a natural language sentence into an equivalent UNL
expression, and DeConverter is used to generate a natural language sentence from an input UNL expression. This paper presents
design and development of a Punjabi DeConverter. It describes five phases of the proposed Punjabi DeConverter, i.e., UNL parser,
lexeme selection, morphology generation, function word insertion, and syntactic linearization. This paper also illustrates all these
phases of the Punjabi DeConverter with a special focus on syntactic linearization issues of the Punjabi DeConverter. Syntactic
linearization is the process of defining arrangements of words in generated output. The algorithms and pseudocodes for imple-
mentation of syntactic linearization of a simple UNL graph, a UNL graph with scope nodes and a node having un-traversed parents
or multiple parents in a UNL graph have been discussed in this paper. Special cases of syntactic linearization with respect to
Punjabi language for UNL relations like ‘and’, ‘or’, ‘fmt’, ‘cnt’, and ‘seq’ have also been presented in this paper. This paper also
provides implementation results of the proposed Punjabi DeConverter. The DeConverter has been tested on 1000 UNL expres-
sions by considering a Spanish UNL language server and agricultural domain threads developed by Indian Institute of Technology
(IIT), Bombay, India, as gold-standards. The proposed system generates 89.0% grammatically correct sentences, 92.0% faithful
sentences to the original sentences, and has a fluency score of 3.61 and an adequacy score of 3.70 on a 4-point scale. The system is
also able to achieve a bilingual evaluation understudy (BLEU) score of 0.72.

Key words: DeConverter, EnConverter, Machine translation, Universal Networking Language (UNL), Syntactic linearization
doi:10.1631/jzus.C1200061 Document code: A CLC number: TP391

1 Introduction

In the age of information technology, Internet

has become an ocean of information. A large portion
of information is still beyond the reach of a significant
portion of society, however, because most of the in-
formation is available in English. In this multi-
lingual scenario, machine translation (MT) is consi-
dered as an important tool to empower society. Uni-
versal Networking Language (UNL) based MT (de-
veloped with an interlingua-based approach) is also
an effort in this direction. UNL programme was
launched in 1996 in Institute of Advanced Studies

(IAS) of United Nations University (UNU), Tokyo,
Japan, and it is currently supported by the Universal
Networking Digital Language (UNDL) Foundation,
an autonomous organization. The approach in UNL
revolves around the development of the EnConverter
and the DeConverter for a natural language. EnCon-
verter is used to convert a given sentence in natural
language to an equivalent UNL expression, and De-
Converter is used to convert a given UNL expression
to an equivalent natural language sentence. A UNL
system has the potential to bridge language barriers
across the world with development of 2n components,
while traditional approaches require n(n−1) compo-
nents, where n is the number of languages (Raman
and Alwar, 1990).

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 180

In this paper, design and development of a Pun-
jabi DeConverter has been presented. This paper
highlights syntactic linearization issues of the Punjabi
DeConverter. Syntactic linearization is the process of
defining arrangements of words in generated output.
This phase plays a vital role in the quality of the gen-
eration process. Algorithms and pseudocodes for im-
plementation of the syntactic linearization phase have
been discussed for the proposed Punjabi DeConverter.

Punjabi language is an Indo-Aryan language and
one of the constitutionally recognized languages of
India. Punjabi is widely spoken in north-west India,
Pakistan, US, Australia, UK, and Canada. There are
more than 91 million native speakers of Punjabi
language, which makes it approximately the 12th
most widely spoken language in the world (Lewis,
2009).

2 Universal Networking Language (UNL)
system and its structure

In the UNL framework, two systems, EnCon-

verter and DeConverter, need to be developed for a
given natural language. The process of converting a
source language (natural language) expression into a
UNL expression is referred to as EnConversion, and
the process of converting a UNL expression into a
target language (natural language) expression is
called DeConversion. The EnConverter and DeCon-
verter for a language form a language server that may
reside on the Internet. Both the EnConverter and the
DeConverter perform their functions on the basis of a
set of grammar rules and a word dictionary of a given
language (Boguslavsky et al., 2005; http://www.undl.
org). UNL represents information at sentence level in
the form of universal words (UWs), UNL relations,
and UNL attributes. The concepts represented by
UWs and UNL relations are used to specify the role of
each word in a sentence. Subjective meaning of a
sentence is expressed through UNL attributes (Uchida,
2005).

Let us consider an example sentence (1) to illu-
strate UNL expression:

The boy is eating rice with a spoon. (1)

The UNL expression for sentence (1) is as

follows:

{unl}
agt(eat(icl>do).@entry.@present.@progress,

boy(icl>male person))
obj(eat(icl>do).@entry.@present.@progress, rice)
ins(eat(icl>do).@entry.@present.@progress,

spoon)
{/unl} (2)

The UNL graph for UNL expression (2) is as

shown in Fig. 1. Here, ‘agt’ is a UNL relation which
indicates ‘a thing that initiates an action’, ‘obj’ is a
UNL relation that indicates ‘a thing in focus which is
directly affected by an event’, ‘ins’ is a UNL relation
used to indicate ‘an instrument to carry out an event’,
and ‘@entry.@present.@progress’ are UNL attributes
which indicate the main verb predicate and tense
information of a given sentence.

3 Related works

UNDL Foundation has provided EnConversion

tool ‘EnCo’ and DeConversion tool ‘DeCo’ for au-
tomatic EnConversion and DeConversion processes,
respectively. Martins et al. (1997) have used the
DeCo tool for DeConverting UNL expressions into
Brazilian Portuguese. Boguslavsky et al. (2000) have
presented a multi-functional environment ‘ETAP-3’,
an extension of the ‘ETAP’ MT system. The UNL
module implemented in ETAP-3 naturally combines
the transfer-based approach and interlingua approach.
In their work, they have also proposed the architec-
ture of a UNL-Russian DeConverter. Multilingual
information processing through UNL has been pro-
posed by Bhattacharyya (2001) and Dave et al. (2001).
They proposed DeConverter for Hindi and Marathi

Fig. 1 Universal Networking Language (UNL) graph
for UNL expression (2)

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 181

with the use of the DeCo tool. Dhanabalan and Geetha
(2003) have proposed a DeCo tool based UNL to
Tamil DeConverter. Blanc (2005) has performed
integration of an exiting MT system ‘ARIANE-G5’ to
a proposed French DeConverter. Shi and Chen (2005)
have proposed a UNL DeConverter for Chinese lan-
guage. They have highlighted the problems of DeCo
tool provided by the UNDL center, which include
difficulty in writing rules, slow speed, and non-
availability of source codes. These issues motivated
them to propose a new DeConverter for Chinese.
Pelizzoni and Nunes (2005) have introduced the
‘Manati’ DeConversion model as a UNL mediated
Portuguese-Brazilian sign language human-aided MT
system. Daoud (2005) has proposed an Arabic De-
Conversion system which involves mapping of rela-
tions, lexical transfer, word ordering, and morpho-
logical generations. Keshari and Bista (2005) have
proposed architecture and design of the UNL Nepali
DeConverter for the DeCo tool. The proposed system
has two major modules, syntactic linearization mod-
ule and morphology generation module. Singh et al.
(2007) have proposed a DeConverter for Hindi lan-
guage known as ‘HinD’, indicating non-availability
of source codes of the DeCo tool and its complex
rule-format. Their system consists of four main stages,
including lexeme selection, morphological generation
of lexical words, function word insertion, and syn-
tactic linearization. All these components use
language-independent algorithms operating on
language-dependent data.

The issues brought forward by researchers about
the DeCo tool have motivated us to work on a UNL-
Punjabi DeConverter. As such, a new DeConverter has
been implemented for DeConversion of UNL expres-
sions to Punjabi language sentences in this work.

4 Architecture of UNL-Punjabi DeConverter

4.1 Architecture of Punjabi DeConverter

A general architecture of Punjabi DeConverter is
given in Fig. 2. It makes use of language-independent
and language-dependent components during the
generation process. The first stage of DeConverter is
the UNL parser which parses an input UNL expres-
sion and builds a node-net from the input UNL ex-
pression. The node-net has a directed acyclic graph
(DAG) structure. During the lexeme selection stage,
target language (i.e., Punjabi) root words and their
dictionary attributes are selected for given UWs in the
input UNL expression from the Punjabi-UW dictio-
nary. After that, nodes are ready for generation of
morphology according to the target language in the
morphology phase. In this stage, the root words may
be changed; i.e., something can be added or removed
to obtain the complete sense of words. The system
makes use of morphology rules for this purpose. In
the function word insertion phase, function words or

case markers, such as ਨੇ nē, ‘ਦੇ ਨਾਲ਼’ ‘dē nāl’, ਨੂੰ nūṃ, ਤ

tōṃ, ਦੇ ਲਈ dē laī, ਵਾਸਤੇ vāsatē, ਦਾ dā, ਦੇ dē, ਦੀ dī, are

inserted to morphed words. These function words are
inserted in a generated sentence, based on the rule
base designed for this purpose. Finally, the syntactic
linearization phase is used to define word order in the
generated sentence so that the output matches a nat-
ural language sentence (Nalawade, 2007; Singh et al.,
2007).

Working of Punjabi DeConverter is illustrated
with an example sentence given in (3).

Punjabi sentence:

ਮੁੰਡੇ ਨੇ ਬਾਗ਼ ਿਵਚ ਫ਼ੁੱਟਬਾਲ ਖੇਿਡਆ ।

Fig. 2 Architecture of Universal Networking Language (UNL)-Punjabi DeConverter

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 182

Transliterated sentence:
muṇḍē nē bāġ vic fuṭṭbāl khēḍiā.

Equivalent English sentence:
The boy played football in the garden. (3)

The UNL expression for example sentence (3) is

given in (4).

{unl}
agt(play(agt>human,obj>game).@past.@entry,

boy(icl>male person))
obj(play(agt>human,obj>game).@past.@entry,

football(icl>game))
plc(play(agt>human,obj>game).@past.@entry,

garden(icl>place))
{/unl} (4)

To convert UNL expression (4) to the natural

language Punjabi sentence, Punjabi DeConverter is
used.

The UNL expression acts as input for the Punjabi
DeConverter. The UNL parser checks the input UNL
expression for errors and generates the node-net or
UNL graph as depicted in Fig. 3.

The Lexeme selection phase populates the

node-list with equivalent Punjabi words for the UWs
given in the input UNL expression. The populated
node-list is given in (5).

Node1: Punjabi word: ਖੇਡ khēḍ;

UW: play(agt>human, obj>game).@past.
@entry

Node2: Punjabi word: ਮੁੰਡਾ muṇḍā;

UW: boy(icl>male person)

Node3: Punjabi word: ਫ਼ੁੱਟਬਾਲ fuṭṭbāl;

UW: football(icl>game)

Node4: Punjabi word: ਬਾਗ਼ bāġ;

UW: garden(icl>place) (5)

In the morphology phase, morphological rules
are applied to modify Punjabi words stored in the
nodes according to UNL attributes given in the input
UNL expression and dictionary attributes retrieved
from the Punjabi-UW dictionary. The nodes given in
(5) are processed by the morphology rules. The
processed nodes are given in (6).

Node1: Punjabi word: ਖੇਿਡਆ khēḍiā;

UW: play(agt>human, obj>game).@past.
@entry

Node2: Punjabi word: ਮੁੰਡੇ muṇḍē;

UW: boy(icl>male person)

Node3: Punjabi word: ਫ਼ੁੱਟਬਾਲ fuṭṭbāl;

UW: football(icl>game)

Node4: Punjabi word: ਬਾਗ਼ bāġ;

UW: garden(icl>place) (6)

It is evident from nodes given in (6) that, in the

morphology phase ਖੇਡ khēḍ ‘play’ is changed to

ਖੇਿਡਆ khēḍiā ‘played’ and ਮੁੰਡਾ muṇḍā ‘boy’ is

changed to ਮੁਡੇੰ muṇḍē by morphology rules. The

function word insertion phase inserts function words
in the morphed lexicon. Nodes processed by the
function word insertion phase are given in (7).

Node1: Punjabi word: ਖੇਿਡਆ khēḍiā;

UW: play(agt>human, obj>game).@past.
@entry

Node2: Punjabi word: ਮੁੰਡੇ ਨੇ muṇḍē nē;

UW: boy(icl>male person)

Node3: Punjabi word: ਫ਼ੁੱਟਬਾਲ fuṭṭbāl;

UW: football(icl>game)

Node4: Punjabi word: ਬਾਗ਼ ਿਵਚ bāġ vic;

UW: garden(icl>place) (7)

In this phase, case markers ਨੇ nē and ਿਵਚ vic ‘in’

are added to Node2 and Node4, respectively, accord-
ing to the function word insertion rule base. In the
syntactic linearization phase, one traverses the nodes
given in (7) in a specific sequence based on the syn-
tactic linearization rule base for Punjabi language.

Fig. 3 UNL graph generated by the UNL parser for UNL
expression (4)

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 183

The sequence for processing of nodes is given in (8)
and the Punjabi sentence generated by this sequence
is given in (9).

Node2 Node4 Node3 Node1 (8)

ਮੁੰਡੇ ਨੇ ਬਾਗ਼ ਿਵਚ ਫ਼ੁੱਟਬਾਲ ਖੇਿਡਆ । (9)

muṇḍē nē bāġ vicfuṭṭbāl khēḍiā.

It is evident from the generated Punjabi sentence

(9) that the system is able to convert an input UNL
expression to Punjabi successfully.

The descriptions of different phases of the Pun-
jabi DeConverter are given in the next.

4.2 Phases of Pubjabi DeConverter

4.2.1 UNL parser phase

The UNL parser is the first phase of UNL-
Punjabi DeConverter. It is used to parse an input UNL
expression to report the errors if any in the input ex-
pression. If the input expression is in a proper format
or free from errors, then it builds a semantic net
known as node-net structure for the input UNL ex-
pression. This node-net is commonly called a UNL
graph. A UNL graph consists of nodes and edges. A
node in the UNL graph represents a concept in the
form of UW. An edge in the node-net represents a
UNL binary relation between two nodes. The edges in
a UNL graph are directed from the parent node to
child node. The system also maintains the access path
from child to its parent for the purpose of
backtracking.

4.2.2 Lexeme selection phase

Lexeme selection is the process of selecting
target language words for UWs given in the input
UNL expression. During lexeme selection, UWs are
searched in dictionary along with constraints speci-
fied in the input UNL expression. This phase uses a
Punjabi-UW dictionary for this task. A Punjabi-UW
dictionary containing 115 000 entries has been de-
veloped by considering the Hindi-UW dictionary
(Indian Institute of Technology (IIT), Bombay, India)
as a reference. While developing the Punjabi-UW
dictionary from the Hindi-UW dictionary, language-
independent components have not been changed but
language-dependent components, such as vowel-
ending and morphology information, are changed as

per Punjabi language. The Hindi headwords are also
replaced by equivalent Punjabi headwords during this
process. As such, the Punjabi-UW dictionary consists
of the Punjabi root word as the headword, a UW and a
set of morphological, syntactic, and semantic
attributes as its entries.

4.2.3 Morphology generation phase

In this phase, headwords are modified according
to the morphology of target language. The system
makes use of generation rules during this process.
These generation rules are designed on the basis of
analysis of Punjabi morphology carried out for this
purpose. There are three categories of morphology
that have been identified for the purpose of
conversion of a UNL expression to equivalent
Punjabi language sentences (Vachhani, 2006). They
are attribute label resolution morphology, relation
label resolution morphology, and noun, adjective,
pronoun, and verb morphology.

Attribute label resolution morphology deals with
generation of Punjabi words on the basis of UNL
attributes attached to a node and its grammatical
attributes retrieved from lexicon. The root words
retrieved from Punjabi-UW dictionary are changed in
this phase depending on their gender, number, person,
tense, aspect, modality (GNPTAM), and vowel-
ending information.

Relation label resolution morphology manages
the prepositions in English or postpositions in Punjabi,
because prepositions in English are similar to
postpositions in Punjabi. These link noun, pronoun,
and phrases to other parts of the sentence. Some

Punjabi postpositions are ਨੇ nē, ਨੂੰ nūṃ, ਉੱਤੇ uttē ‘over’,

ਦਾ dā ‘of’, ਕੋਲ kōlōṃ ‘from’, ਨੇੜੇ nēḍaē ‘near’, ਲਾਗੇ

lāgē ‘near’, etc. Insertion of these words in generated
output depends upon the information encoded in UNL
relations of a given UNL expression. In relation label
morphology, most UNL relation labels introduce
postpositions (also known as function words or case
markers) between the child node and parent node
during the generation process. Generation of these
words depends upon UNL relation and the conditions
imposed on parent and child nodes’ attributes of UNL
relation. Relation label morphology is used to prepare
the rule base used during the function word insertion
phase of DeConverter as discussed in the following.

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 184

With attribute and relation label morphology, the
system is able to generate a sentence very close to its
natural form. The phonetic properties of a language
are handled by noun, adjective, pronoun, and verb
morphology of the DeConverter.

4.2.4 Function word insertion phase

The function word insertion phase is used to
insert function words like case markers or post-

positions and conjunctions in Punjabi (ਨੇ nē, ਨੂੰ nūṃ,

ਉੱਤੇ uttē ‘over’, ਦਾ dā ‘of’, ਕੋਲ kōlōṃ ‘from’, ਅਤੇ

‘and’, etc.) to the morphed words generated at the
morphology phase. Insertion of function words in
generated output depends upon UNL relation and
conditions imposed on parent and child nodes’
attributes in a relation (Singh et al., 2007). A rule base
has been prepared for this purpose. For each of 46
UNL relations, different function words are used
depending upon grammatical details of a target
language (Dey and Bhattacharyya, 2005).

Following Sinha (2005) and Vachhani (2006), a
rule base for insertion of the function word has been
prepared. This rule base consists of nine columns. The
description of each column of this rule format is given
below.

1. First column: relation name
The name of UNL relation corresponding to

which the reference to the rule base is being made is
stored in this column.

2. Second column: the function word preceding
the parent node

The function word, which should be inserted
before a parent node of the relation in generated
output, is stored in this column.

3. Third column: the function word following the
parent node

The function word, which should be inserted
after a parent node of a given relation in generated
output, is stored in this column.

4. Fourth column: the function word preceding
the child node

The function word, which should be inserted
before a child node of the relation in generated output,
is stored in this column.

5. Fifth column: the function word following the
child node

The function word, which should be inserted

after a child node of the relation in generated output,
is stored in this column.

6. Sixth column: positive conditions for the
parent node

The attributes whose presence needs to be as-
serted on the parent node for firing of the rule are
stored in this column.

7. Seventh column: negative conditions for the
parent node

The attributes whose absence needs to be as-
serted on the parent node for firing of the rule are
stored here.

8. Eighth column: positive conditions for the
child node

The attributes whose presence needs to be as-
serted on the child node for firing of the rule are
stored in this column.

9. Ninth column: negative conditions for the
child node

The attributes whose absence needs to be as-
serted on the child node for firing of the rule are
stored.

If there is more than one attribute that needs to be
asserted on a given node for firing of a rule, then they
are stored in the rule base with the separation of ‘#’
sign. Here, attributes represent UNL attributes (ob-
tained from a given UNL expression) or lexical
attributes (obtained from the Punjabi-UW dictionary)
of a node.

The rule base for function word insertion is il-
lustrated with an example rule given in (10).

agt:null:null:null::@past#V:VINT#

@progress#jA:N#3rd:1st#2nd, (10)

where ‘agt’ is a UNL relation under consideration,
and firing of the given rule will result into insertion of

function word ਨੇ nē following the child node in gen-

erated output, because the function word appears in
the fifth column and the second, third, and fourth
columns contain ‘null’ in the rule. The sixth column
contains ‘@past#V’, which means that the rule will be
fired if the parent of ‘agt’ relation contains ‘@past’ as
its UNL attribute in the given input UNL expression
and has a ‘V’ as its lexical attribute in Punjabi-UW
dictionary. The seventh column contains ‘VINT#@
progress#jA’ which refers to the attributes whose

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 185

absence needs to be asserted on the parent node for
firing of the rule. It means that the parent node should
not contain ‘VINT’ (intransitive verb), ‘jA’ (‘go’ verb)
attributes in the lexicon or the ‘@progress’ attribute
in the parent of UNL expression. The eighth column
of the rule given in (10) contains ‘N#3rd’ which refers
to the attribute whose presence needs to be asserted
on the child node for firing of the rule; i.e., the child
should have an ‘N’ (noun) and ‘3rd’ (third person)
attribute in the Punjabi-UW dictionary. The ninth
column contains ‘1st# 2nd’ which refers to the
attribute whose absence needs to be asserted on the
child node for firing of the rule. It means that the child
node should not refer to the first person or the second
person in the sentence. Thus, if the relation ‘agt’ has a
parent node with an ‘@past’ and ‘V’ attribute, with-
out ‘VINT’, ‘jA’, ‘@progress’, or ‘@custom’
attribute, or has a child node with an ‘N’ and ‘3rd’
attribute and without a ‘1st’ or ‘2nd’ attribute, then

function word ਨੇ nē will be inserted following the

child node in generated output.
For example, in UNL relation ‘agt(play(agt>

human, obj>game).@past.@entry, boy(icl>male
person))’ of UNL expression (2), the parent node of
relation ‘agt’ is ‘play(agt>human, obj>game)’ having
‘V’ and ‘@past’ attribute and without the ‘VINT’
attribute in the lexicon. The child node of ‘agt’ rela-
tion is ‘boy(icl>male child)’ that has ‘N’ and ‘3rd’
attribute and does not have ‘1st’ and ‘2nd’ attributes
in the lexicon. As such, this will result into the firing
of rule (10) and thus the generation of function word

ਨੇ nē followed by child node ‘boy(icl> male child)’ in

generated output.

4.2.5 Syntactic linearization phase

Syntactic linearization is the process of linea-
rizing the lexemes in the semantic hyper-graph. As
such, it is a process to define the word order in the
generated sentence. In a language, some word orders
are considered more natural than others. Syntactic
linearization deals with the arrangements of words in
generated output so that output matches the natural
language sentence. The system assigns relative posi-
tions to various words based on the relations they
share with the headword in a sentence (Vachhani,
2006). The structural differences between English
(subject-verb-object) and Punjabi (subject-object-

verb, SOV) languages necessitate the syntactic linea-
rization phase in the development of a Punjabi
Deonverter.

5 Major issues in syntactic linearization

Parent-child relationship and matrix-based

priority of relations are two important issues in the
syntactic linearization phase.

5.1 Parent-child relationship

In a UNL binary relation rel(UW1, UW2), UW1
acts as the parent of the relation, whereas UW2 acts as
the child of the relation. For each parent-child rela-
tionship, the system should state whether the parent
should be ordered before or after the child in the
generated output (Vora, 2002). For the syntactic li-
nearization of Punjabi language, in most of UNL
relations the parent node appears right to all of its
children in the generated output.

To illustrate this concept, let us consider a UNL
relation agt(UW1, UW2), where UW1 is a verb and
UW2 is the subject or agent of that event. Since
Punjabi is an SOV language, subject always comes to
the left of the verb. Same is the case of ‘obj’ relation.
In case of a UNL expression given in (11), both
children, i.e., ‘boy(icl>male child)’ and ‘rice(icl>
food)’, will be placed left to the parent ‘eat’.

{unl}
agt(eat.@present.@entry, boy(icl>male child))
obj(eat.@present.@entry, rice(icl>food))
{/unl} (11)

Since both children are inserted to the left of the

parent, the child to be inserted first in generated
output will be decided by the matrix-based priority of
relations.

5.2 Matrix-based priority of relations

Necessity of matrix-based priority of relations
occurs when the children of two or more UNL rela-
tions have a common parent. It is important to decide
the relative positions of children (sharing a common
parent) with respect to each other in generated output.
Following Vora (2002), relative positions of children
with respect to each other in the proposed Punjabi

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 186

DeConverter are decided using a matrix M. M has 46
rows and 46 columns, representing 46 UNL relations
specified in UNL specifications (Uchida, 2005). This
matrix, M=[mij], where i=1, 2, …, 46 and j=1, 2, …,
46, contains the elements as ‘L’, ‘R’, and ‘-’, where
‘L’ means towards left, ‘R’ means towards right, and
‘-’ means no action.

If ‘mij’=‘L’, then the position of the child of the
ith relation is left to the child of the jth relation when
the two children share a common parent. If ‘mij’=‘R’,
then the position of the child of the ith relation is right
to the child of the jth relation when the two children
share a common parent. If ‘mij’=‘-’, then no action is
to be taken as it is impossible that the child of this ith
relation shares a common parent with the child of this
jth relation (Hrushikesh, 2002; Vachhani, 2006). This
is illustrated with ‘Ri’ and ‘Rj’ as two UNL binary
relations between three nodes ‘N1’, ‘N2’, and ‘N3’ as
Ri(N3, N1) and Rj(N3, N2). Here, nodes ‘N1’ and ‘N2’

are the children of the same parent ‘N3’ (Fig. 4).

Based on the structure of target language, if ‘N1’

appears at the left of ‘N2’ in the generated sentence as
denoted by ‘(N1 L N2)’, then the priority matrix shown
in Fig. 5 needs to be maintained for its syntactic
linearization.

Priority of the child of a relation depends upon
the frequency of ‘L’ in its row. If a relation has all ‘L’
in its row, then the child node of that relation will
have the highest priority and it will appear at extreme
left in generated output. Similarly, if a relation has all
‘R’ in its row, then the child node of that relation will

have the lowest priority and will appear at extreme
right of all the children sharing a common parent in
generated output (Vachhani, 2006; Nalawade, 2007).
Owing to the fact that we can associate a priority to
the child associated with a relation, M is called a
priority matrix.

6 Syntactic linearization for simple sentences

A simple sentence contains a subject and a verb,
and it expresses a complete thought. The UNL ex-
pression of simple sentences is converted into a sim-
ple node-net or UNL graph by the UNL parser. The
processing sequence of nodes of this UNL graph
controls the word order in the generated output. A
program has been developed in Java to control the
sequence of processing of nodes of a simple UNL
graph. PseudoCode 1 (Table 1) contains the instruc-
tions corresponding to this program.

PseudoCode 1 performs processing of nodes of
the UNL graph according to the priority matrix. The
given PseudoCode works in a loop, and control exits
out of it after the processing of all nodes of the graph.
It first traverses the highest priority child node sharing
a common parent. If a node has no further unvisited
child, then it is processed and added into the final
string. After processing of the child node, the parent
of that node becomes an active node and again tra-
verses the highest priority un-processed child node.
This process continues until the entry node gets
processed.

The working of PseudoCode 1 is illustrated with
an example English sentence given in (12).

He has scored 80% marks. (12)

The UNL expression for this example sentence
is

{unl}
agt(score.@present.@complete.@entry, he)
obj(score.@present.@complete.@entry, marks)
mod(marks, percent)
qua(percent, 80)
{/unl} (13)

The UNL graph for UNL expression (13) is de-
picted in Fig. 6.

N3

N2 N1

Ri Rj

Fig. 4 UNL graph of two nodes with the same parent

 Ri Rj

Ri - L

Rj R -

Fig. 5 Matrix representation for (N1 L N2) structure

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 187

The node-list for the UNL expression given in

(13) after processing of the morphology phase and
function word insertion phase is given in (14).

Node1: Punjabi word: ਹਾਸਲ ਕੀਤੇ hāsal kītē;

UW: score

Node2: Punjabi word: ਉਸ ਨੇ us nē;

UW: he

Node3: Punjabi word: ਅੰਕ aṅk;

UW: marks

Node4: Punjabi word: ਫ਼ੀਸਦੀ fīsadī;

UW: percent
Node5: Punjabi word: 80;

UW: 80 (14)

In Fig. 6, the entry node is ‘score.@present.
@complete.@entry’ as this contains ‘@entry’
attribute, and the labels on edges indicate UNL

Table 1 PseudoCode 1 to control the processing sequence of nodes of simple UNL graph
1 Begin

2 start traversing the graph from the entry node and set this as the active node;

3 while (true)

4 if (active node has no parent)

5 if (active node has no unprocessed child)

6 add node to final string;

7 Mark node as processed;

8 exit from the loop;

9 Else

10 if (node is not already marked as visited)

11 mark the node as a visited node;

12 end-if

13 get the highest priority unprocessed child relation;

14 set the highest priority unprocessed child relation as an active node;

15 end-if

16 else

17 if (node has one parent)

18 if (active node has no unvisited child)

19 add node to final string;

20 mark the node as processed;

21 set the parent of the node as an active node;

22 else

23 if (node is not already marked as visited)

24 mark the node as a visited node;

25 end-if

26 get the highest priority unprocessed relation child;

27 set the highest priority unprocessed child relation as the active node;

28 end-if

29 end-if

30 end-if

31 end-while

32 End

Fig. 6 UNL graph for the UNL expression (13)

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 188

relation labels. Here, priority of ‘agt’ is higher than
the priority of ‘obj’ relation as shown in Fig. 6. Thus,
the ‘he’ node will be traversed first. Note that the
priority matrix given in Fig. 7 is a sub-matrix of ear-
lier defined matrix M.

The ‘he’ node has no child and its parent node
‘score’ has already visited, so it will be processed and
its Punjabi word attribute will be appended to the final
string used to store generated output; i.e., the final

string will become ‘ਉਸ ਨੇ’. Now, the parent of the ‘he’

node, i.e., the ‘score’ node, will become an active
node. It has only one unprocessed child, i.e., the
‘marks’ node. Thus, it will be traversed next and
marked as visited. It has one unprocessed child node
‘percent’, so it will be traversed and marked as visited.
The ‘percent’ node also has one unprocessed child
node ‘80’, so it will be traversed next and marked as
visited. The node ‘80’ has no further unprocessed
child, so it will finally be processed and its Punjabi
word attribute will be appended to the final string; i.e.,

the final string will become ‘ਉਸ ਨੇ 80’. The parent of

the ‘80’ node, i.e., the ‘percent’ node, now will be-
come an active node. The ‘percent’ node has no un-
processed child, so it will be processed and its Punjabi
word attribute will be appended to the final string; i.e.,

the final string will become ‘ਉਸ ਨੇ 80 ਫ਼ੀਸਦੀ’. Now,

the parent of the ‘percent’ node, i.e., the ‘marks’ node,
will become an active node. The ‘marks’ node has no
unprocessed child, so it will be processed and its
Punjabi word attribute will be appended to the final

string; i.e., the final string will become ‘ਉਸ ਨੇ 80

ਫ਼ੀਸਦੀ ਅੰਕ’. Now, the parent of the ‘marks’ node, i.e.,

the ‘score’ node, will become an active node. It is an
entry node and has no unprocessed child, so it will be
processed and its Punjabi word will be appended to

the final string; i.e., the final string will become ‘ਉਸ ਨੇ

80 ਫ਼ੀਸਦੀ ਅੰਕ ਹਾਸਲ ਕੀਤੇ’. Since the entry node is

processed, control will exit from loop and final output
according to the syntactic linearization will be
available in the final string. Thus, PseudoCode 1 will
result in the processing of the node-net in the order
given in (15) and it will result into a Punjabi sentence
shown in (16) as generated output of Punjabi De-
Converter.

Node2 Node5 Node4 Node3 Node1, (15)

ਉਸ ਨੇ 80 ਫ਼ੀਸਦੀ ਅੰਕ ਹਾਸਲ ਕੀਤੇ । (16)

us nē 80 fīsadī aṅk hāsal kītē.
The equivalent English sentence:

He has scored 80% marks.

7 Syntactic linearization of a UNL graph with
a scope node

Scope is used to represent a compound universal

word or a compound concept. A compound concept is
a set of binary relations that are grouped together to
express a complex concept. This is defined by adding
a compound universal word identifier (UW-ID) im-
mediately after the relation label. A compound UW is
referred to with its ID instead of a universal word.

The syntactic linearization for sentences with a
compound concept is a bit different from that for
simple sentences. In this case, a UNL graph contains a
scope node which itself is a UNL graph (Fig. 8).

Fig. 8 UNL graph with a scope node for the UNL ex-
pression given in (18)

Fig. 7 Priority matrix for ‘agt’ and ‘obj’ relations

Priorities of relations
agt: 1
obj: 0

 agt obj

agt - L

obj R -

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 189

Algorithm 1 has been used to produce syntactic
linearization for a UNL graph with a scope node.
Algorithm 1 (Processing the nodes of the UNL graph
with a scope node)

1. Develop syntactic linearization by considering
the scope node as a single node with PseudoCode 1.

2. Develop syntactic linearization of the scope
node’s UNL graph using PseudoCode 1.

3. Replace the scope node in the output gener-
ated in step 1 with the output generated in step 2 to
obtain the final generated sentence.

Syntactic linearization of the UNL graph with a
scope node is illustrated by an example sentence
given in (17).

I went to Delhi 20 days back. (17)

The UNL expression of this example sentence is

{unl}
agt(go.@past.@entry, I(icl>person))
plc(go.@past.@entry, Delhi)
tim(go.@past.@entry, :01)
man:01(back.@entry, day)
qua:01(day, 20)
{/unl} (18)

The UNL graph of this UNL expression is de-

picted in Fig. 8. In Fig. 8, ‘go’ is the entry node hav-
ing three children, ‘I(icl>person)’ with ‘agt’ relation,
‘Delhi’ with ‘plc’ relation, and scope node ‘:01’ with
‘tim’ relation. Here, ‘agt’ relation has the highest
priority followed by ‘tim’ relation and then by ‘plc’
relation, as shown by the priority matrix in Fig. 9.
Thus, the system will first traverse the ‘I(icl>person)’
node, followed by the scope node ‘:01’, and then by
the ‘Delhi’ node.

Using PseudoCode 1, while considering the
scope node as a single node, syntactic linearization of
this UNL graph by considering UWs (without con-
straints) shall be

I:01 Delhi go. (19)

Using Algorithm 1, the scope node ‘:01’ shown

in output (19) is replaced by the output generated
from syntactic linearization of the scope node’s UNL
graph. Again, using PseudoCode 1, syntactic linea-
rization of UWs (without constraints) of the scope
node’s UNL graph is

20 day back. (20)

The final output for the UNL expression given in

(18) is generated by replacing the scope node in (19)
with syntactic linearization of UWs given in (20).
Thus, the final syntactic linearization of UWs (with-
out constraints) for the UNL graph depicted in Fig. 8
will be generated as

I 20 day back Delhi go. (21)

A Punjabi sentence generated after applying the
morphology, function word insertion, and syntactic
linearization phases of the Punjabi DeConverter is
given in (22).

ਮ 20 ਿਦਨ ਪਿਹਲਾਂ ਿਦੱਲੀ ਿਗਆ । (22)

maiṃ 20 din pahilāṃ dillī giā.

8 Untraversed parent handling

While traversing a UNL graph, the system may
encounter a situation where the parent of a node is
untraversed (Vachhani, 2006). This is illustrated with
the help of an example expression given in (23).

Above mentioned DeConverter detail. (23)

The UNL expression for this example expression

is given in (24), and the corresponding UNL graph is
given in Fig. 10. Fig. 9 Priority matrix for ‘agt’, ‘plc’, and ‘tim’ relations

Priorities of relations
agt: 2
plc: 0
tim: 1

 agt plc tim

agt L L

plc - - R

tim R L -

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 190

{unl}
obj(mention, detail.@entry)
plc(mention, above)
mod(detail.@entry, DeConveter)
{/unl} (24)

In Fig. 10, the ‘detail’ node acts as the entry node.

According to PseudoCode 1, traversal of the UNL
graph starts from the entry node, i.e., the ‘detail’ node.
Here, the system encounters a case of untraversed
parent, because the parent of the ‘entry’ node, i.e., the
‘mention’ node, has not been traversed by the system.
The following strategy has been implemented for
handling an untraversed parent node.

If the system encounters a node having an un-
traversed parent, then that node will be removed as a
child of its parent and will be added as a virtual parent
to its untraversed parent. The parent of that node will
be set to ‘null’ and the untraversed parent node will be
set as an active node. Subsequent syntactic lineariza-
tion will be carried out according to PseudoCode 1.
PseudoCode 2 has been used to implement this
strategy.
PseudoCode 2 (Handling of the untraversed parent
node)

if (parent of active node is untraversed)
add the active node as a virtual parent to its untra-

versed parent;
remove the active node as a child of its parent;
set the active node parent to null;
set the untraversed parent node as an active node;

end-if

PseudoCode 2 is inserted between lines num-

bered 17 and 18 of PseudoCode 1 to extend it to
handle the UNL graph having an untraversed parent
node.

According to PseudoCode 2, for processing of
the UNL graph in Fig. 10, the system removes the
‘detail’ node as the child of its untraversed parent
node ‘mention’ and sets its parent to null. Now, the
system adds the ‘detail’ node as a virtual parent of its
untraversed parent node ‘mention’. The system then
sets the untraversed parent node, i.e., the ‘mention’
node, as an active node. The modified UNL graph
after these actions is depicted in Fig. 11.

After starting traversal of the UNL graph
(Fig. 10) from the entry node, i.e., ‘detail’, the system
encounters a situation of untraversed parent. The
system modifies the UNL graph according to Pseu-
doCode 2 and sets the ‘mention’ node as an active
node. It has one untraversed child node, i.e., ‘above’.
The ‘above’ node has no further unprocessed child, so
its Punjabi word attribute will be appended to the final
string used to store the generated output. It has the
parent node ‘mention’ which has already traversed
and has no unprocessed child node; thus, it will be
processed by the system and its Punjabi word attribute
will be appended to the final string. The ‘mention’
node has one virtual parent, i.e., the ‘detail’ node;
hence, it will become an active node. This node has
one child node, i.e., ‘DeConverter’, so it will become
an active node. It has no unprocessed child, so it will
be processed and its Punjabi word attribute will be
appended to the final string. The parent of the ‘De-
Converter’ node, i.e., the ‘detail’ node, will now be
set as an active node. It has no parent and no unpro-
cessed child, so the ‘detail’ node is processed by the
system and its Punjabi word attribute will be ap-
pended to the final string. Since all the nodes are
processed by the system, control will exit and final
output according to syntactic linearization will be
available in the final string.

obj mod

plc

mention

above

detail

DeConverter

Fig. 11 Modified UNL graph for a node having an un-
traversed parent

Fig. 10 UNL graph of UNL expression (24)

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 191

Output given in (25) indicates a final syntactic
linearization of UWs (without constraints) and output
given in (26) shows the generated Punjabi sentence
after application of the morphology, function word
insertion, and syntactic linearization phases of the
Punjabi DeConverter.

above mention DeConverter detail, (25)

ਉੱਪਰ ਿਦੱਤੀ ਡੀਕੰਨਵਰਟਰ ਦੀ ਿਵਆਿਖਆ । (26)
uppar dittī dīknnavratar dī viākhiā.

9 Handling of multiple parents

Normally, in a UNL graph, each child node has

only one parent; i.e., one node plays only a single role.
But sometimes, one child may have more than one
parent; i.e., one node plays more than one role in a
UNL expression. In such a case, the system may en-
counter a situation where the parent of a node may be
untraversed or unvisited. This situation is illustrated
with an example sentence given in (27).

His eyes are affected by strong viral infection.

(27)

The UNL expression for the example sentence
given in (27) is

{unl}
obj(affect.@present.@entry, eye.@pl)
pos(eye.@pl, he)
agt(affect.@present.@entry, infection)
aoj(viral, infection)
mod(infection, strong)
{/unl} (28)

The UNL graph of the UNL expression given in

(28) is depicted in Fig. 12. Here, the entry node ‘af-
fect’ has two children ‘eye’ and ‘infection’ associated
with UNL relations ‘obj’ and ‘agt’, respectively. The
‘agt’ relation is of the highest priority, so the ‘infec-
tion’ node will be traversed first by the system. Now,
the system encounters two parents for an active node
‘infection’. The following strategy has been imple-
mented for handling multiple parents.

If the system encounters a node having multiple
parents, then its untraversed parent will be detected

by the system and the active node will be set as a
virtual parent of the untraversed parent. The untra-
versed parent will now be removed as the parent of
the active node, and the active node will be removed
as a child of the untraversed parent. The untraversed
parent node will be set as the active node and further
processing of syntactic linearization will be carried
out according to PseudoCode 1. PseudoCode 3 has
been used to implement this strategy.
PseudoCode 3 (Handling nodes with multiple parents
nodes)

if (node has multiple parents)

find an untraversed parent;
set the active node as a virtual parent of its untra-

versed parent;
remove the untraversed parent from the active

node’s parent list;
remove the active node as a child of its untraversed

parent;
set the untraversed parent node as an active node;

end-if

PseudoCode 3 is inserted between lines num-

bered 29 and 30 of PseudoCode 1 for extending it to
handle the UNL graphs having nodes with multiple
parents.

According to PseudoCode 3, for processing of
the UNL graph depicted in Fig. 12, the system will
find the untraversed parent of the active node having
multiple parents, i.e., ‘infection’. The node ‘viral’ will
be identified as the untraversed parent node of the
active node. According to PseudoCode 3, the system
will set ‘infection’ as a virtual parent of the untra-
versed parent node, i.e., ‘viral’ (Fig. 13).

Fig. 12 UNL graph having multiple parents for the UNL
expression (28)

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 192

Output given in (29) contains a final syntactic
linearization of UWs (without constraints) and the
output given in (30) contains a generated Punjabi
sentence after application of the morphology, func-
tion word insertion, and syntactic linearization phases
of the Punjabi DeConverter.

strong viral infection he eye affect, (29)

ਤਕੜੇ ਜੀਵਾਿਣਕ ਛੂਤ ਨੇ ਉਸ ਦੀਆਂ ਅੱਖਾਂ ਨੂੰ ਅਸਰ ਕੀਤਾ । (30)
takṛē jīvāṇik saṇkramaṇ nē us dīāṃ akkhāṃ nūṃ
asar kītā.

10 Special cases in syntactic linearization

Vachhani (2006) and Nalawade (2007) have

identified some UNL relations that need to be treated
as special cases during their syntactic linearization for
Hindi language. It has been explored that these cases
are also applicable for Punjabi language. These UNL
relations are: ‘and’ and/or ‘or’ relation(s), ‘fmt’ rela-
tion, ‘cnt’ relation, and ‘seq’ relation. The following
strategies have been formulated for syntactic lineari-
zation of these UNL relations.

10.1 Strategy for ‘and’ and/or ‘or’ relation(s)

For syntactic linearization of the UNL graph
having the ‘and’ and/or ‘or’ relation(s), PseudoCode 1
requires a minor modification. While traversing a
UNL graph, if the system encounters the relation
‘and’ or ‘or’ as the highest priority relation, then the
parent node of the relation ‘and’ or ‘or’ will be
processed first and its child node will be set as an
active node. Further syntactic linearization will be
carried out according to PseudoCode 1. This strategy
has been implemented in PseudoCode 4.

PseudoCode 4 (Handling of ‘and’ and/or ‘or’
relations)

if (highest priority relation is ‘and’ or ‘or’)

process the active node by appending its Punjabi
word attribute into the final string;

mark the node as a special node to indicate that it
has already processed;

end-if

PseudoCode 4 is inserted between lines 13 and

14, and also between lines 26 and 27 of PseudoCode 1
for extending it to handle the UNL graphs having
‘and’ and/or ‘or’ relations.

10.2 Strategy for ‘fmt’ relation

Similarly, if during syntactic linearization of a
UNL graph, the system encounters the relation ‘fmt’
as the highest priority relation, the parent node of
relation ‘fmt’ is processed first, followed by the
processing of its child node. After the processing of
the child node, the child node will be set as an active
node. Further processing will be carried out according
to PseudoCode 1. This strategy has been implemented
in PseudoCode 5.
PseudoCode 5 (Handling of the ‘fmt’ relation)

if (highest priority relation is ‘fmt’)

process the active node by appending its Punjabi
word attribute into the final string;

mark the node as a special node to indicate that it
has already processed;

process its child node by appending its Punjabi
word attribute into the final string;

mark the child node as a special node to indicate
that it has already processed;

set the child node as the active node;
end-if

PseudoCode 5 is inserted between lines 13 and

14, and also between 26 and 27 of PseudoCode 1 for
extending it to handle the UNL graphs having ‘fmt’
relation.

10.3 Strategy for ‘cnt’ relation

In case of a UNL graph having the ‘cnt’ relation,
the Punjabi word attribute of the parent node should
be appended at the leftmost position in the generated

Fig. 13 Modified UNL graph for a node having multiple
parents

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 193

output. PseudoCode 6 has been used to implement
this strategy.
PseudoCode 6 (Handling of ‘cnt’ relation)

if (highest priority relation is ‘cnt’)
process the active node by appending its Punjabi

word attribute to the leftmost position in the
generated output;

mark the node as a special node to indicate that it
has already processed;

end-if

PseudoCode 6 is inserted between lines num-
bered 13 and 14, and also between lines numbered 26
and 27 of PseudoCode 1 for extending it to handle the
UNL graphs having the ‘cnt’ relation.

10.4 Strategy for ‘seq’ relation

The ‘seq’ relation indicates a sequence of events

in the sentence. It results into insertion of ਪਿਹਲਾਂ

pahilāṃ ‘before’ or ਬਾਅਦ bāad ‘after’ in the gener-

ated Punjabi sentence. When there is a sequence of
events, one event generally refers to the other event.
The ‘@reference’ has been used as a UNL attribute to
resolve a referring event, as suggested by Nalawade
(2007). This attribute may appear with the parent or
child node of the ‘seq’ relation to specify the referring
event.

The following strategy has been implemented
for syntactic linearization of the UNL graph having
the ‘seq’ relation: (1) If the parent node of the ‘seq’
relation has the ‘@reference’ attribute, then the child
node of the ‘seq’ relation should be considered as the
lowest priority node and it should be processed after
its parent node. (2) If the child node of the ‘seq’ rela-
tion has an ‘@reference’ attribute, then the child node
of ‘seq’ relation should be considered as the highest
priority node and it should be traversed first.

To implement this strategy, for the ‘seq’ relation,
the priority of the relation ‘seq’ has been set to the
minimum out of all the relations in the priority matrix
M.

PseudoCodes 7 and 8 have been implemented
for the syntactic linearization of the ‘seq’ relation.
PseudoCode 7 (Implementation of step 1 of the
strategy for ‘seq’ relation)

if (highest priority relation is ‘seq’ and the active node

has an ‘@reference’ attribute)
process the active node by appending its Punjabi

word attribute into the generated output;
mark the node as a special node to indicate that it

has already processed;
end-if

PseudoCode 8 (Implementation of step 2 of the
strategy of the ‘seq’ relation)

if (active node has a ‘seq’ relation as one of its child
relation and it does not have the ‘@reference’
attribute)
set ‘seq’ as a highest priority relation;

end-if

PseudoCode 7 is inserted between lines num-
bered 13 and 14, and also between lines numbered 26
and 27 of PseudoCode 1. PseudoCode 8 is inserted
between lines numbered 12 and 13, and also between
lines numbered 25 and 26 of PseudoCode 1. These
insertions allow PseudoCode 1 to handle UNL graphs
with the ‘seq’ relation.

All the algorithms and PseudoCodes discussed
above have been implemented in Java to develop the
proposed Punjabi DeConverter. This DeConverter
forms a part of Web interface developed for online
generation of Punjabi language from a given UNL
expression.

11 Results and discussions

Evaluation of the proposed system has been

performed by using a set of 1000 Punjabi sentences
with their corresponding set of UNL expressions. For
this purpose, the Spanish UNL Language Server
(http://www.unl.fi.upm.es/english/index.htm) and
agricultural domain threads developed by IIT, Bom-
bay, India, are considered as gold-standard systems.
The Spanish Language Server contains English sen-
tences with their corresponding UNL expressions
generated by the system. These English sentences
were translated manually into equivalent Punjabi
sentences for their comparison with the generated
output of the Punjabi DeConverter. The agricultural
domain threads developed by IIT, Bombay have
Hindi language sentences with their equivalent UNL
expressions. Again, these Hindi sentences were

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 194

manually translated into Punjabi language for com-
parison with the generated output of the Punjabi
DeConverter.

The UNL expressions given at these gold-
standards are input to the Punjabi DeConverter for
their DeConversion to Punjabi language. The output
of the Punjabi DeConverter is compared with the
corresponding manually translated Punjabi sentences
from English and Hindi sentences given at the gold-
standards. Subjective tests like adequacy and fluency
tests have been performed on the proposed system.
The bilingual evaluation understudy (BLEU) score
has also been calculated to evaluate the quality of
output. Some of the Punjabi sentences generated by
the proposed Punjabi DeConverter with their cor-
responding input UNL expressions are given in
Table 2.

The proposed system has been evaluated by 10
evaluators having a good knowledge of Punjabi and a
basic knowledge of the UNL system. As suggested in
LDC (2005) and Singh et al. (2007), the evaluators
were asked to provide their intuitive reactions to the
output and to work as quickly as comfortable. First of
all, fluency judgments have been taken. The evalua-
tors did not have any clue about the original source
sentence for these judgments. After fluency judg-
ments, the evaluators were asked to look at the orig-
inal source sentences for adequacy judgments.

The fluency score of the proposed system is 3.61
(on a 4-point scale). The response by evaluators is
further analyzed and the following are some impor-
tant findings from the fluency test:

1. 73.50% sentences obtained a score 4; i.e.,
these are perfect having no grammatical mistake.

2. 15.50% sentences obtained a score 3; i.e.,
these are fair and easy to understand.

3. 9.50% sentences obtained a score 2; i.e., these
are acceptable and are understandable with effort.

4. 1.50% sentences obtained a score 1; i.e., these
are hard to understand.

Here, it is worth mentioning that the proposed
system generated 89.0% grammatically correct sen-
tences. These sentences are those that have a score of
3 or above.

The adequacy score of the proposed system is
3.70 (on a 4-point scale). Response by evaluators has
again been further analyzed and the following are
some important findings for the adequacy test.

1. 79.2% sentences obtained a score 4; i.e., there
is no loss of meaning during their translation.

2. 12.8% sentences obtained a score 3; i.e., most
of the meaning of these source sentences is conveyed
in the translated sentence.

3. 7.0% sentences obtained a score 2; i.e., some
of the meaning of these source sentences is conveyed
in the translated sentence.

4. 1.0% sentences obtained a score 1; i.e., hardly
any meaning of these source sentences is conveyed in
the translated sentence.

Here, it is worth mentioning that the proposed
system generated 92% sentences that are faithful to
the original sentences. These sentences are those that
have a score of 3 or above.

We have also observed that there is a strong
correlation between fluency and adequacy scores.
This relation between adequacy and fluency is ex-
plored further in Fig. 14. It shows the distribution of
adequacy scores for various values of fluency.

Quality of the proposed system is also evaluated
on the basis of the BLEU score. The proposed system
is able to achieve a BLEU score of 0.72.

12 Conclusions

Syntactic linearization is an important issue in
natural language generation systems. Quality of out-
put is largely influenced by this phase of DeConverter.
Matrix-based priority of relation has been used to
define syntactic linearization of a UNL graph in this
paper. The algorithms and pseudocodes have been
implemented in Java for syntactic linearization of a
simple UNL graph, syntactic linearization of a UNL
graph with a scope node and to handle the untraversed
parent, multiple parents, and special cases in syntactic
linearization. The proposed system has been tested for
1000 UNL expressions. This system achieved a flu-
ency score of 3.61 on a 4-point scale, an adequacy
score of 3.70 on a 4-point scale, and a BLEU score of
0.72. A major outcome of this research work is the
development of the Punjabi DeConverter. The pro-
posed system can convert a UNL expression to cor-
responding Punjabi language text. A Web interface
has also been designed for online DeConversion of
the UNL expression to the corresponding Punjabi
sentence. It shall enable Punjabi readers to read the

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 195

Table 2 Punjabi sentences generated by the DeConverter with their corresponding input UNL expressions

Sentence
No.

Input UNL expression
Punjabi sentences generated

by the DeConverter

1

{unl}
mod(competition(icl>event), fair)
obj(win(icl>do).@present.@sg.@male.@entry, prize)
scn(win(icl>do).@present.@sg.@male.@entry, competition(icl>event))
agt(win(icl>do).@present.@sg.@male.@entry, I(icl>person))
{/unl}

ਮ ਸਾਫ਼ ਸੁਥਰੇ ਮੁਕਾਬਲੇ ਿਵਚ ਇਨਾਮ

ਿਜੱਿਤਆ ਹੈ ।
maiṃ sāpha suthrē mukāblē vic inām

jittiā hai.
I have won the prize in fair

competition.

2

{unl}
obj(translate(icl>do).@present.@sg.@female.@entry, book(icl>publication))
gol(translate(icl>do).@present.@sg.@female.@entry, punjabi(icl>language))
src(translate(icl>do).@present.@sg.@female.@entry, English(icl>language))
agt(translate(icl>do).@present.@sg.@female.@entry, boy(icl>young person))
{/unl}

ਮੁੰਡੇ ਨੇ ਅੰਗਰਜ਼ੇੀ ਤ ਪੰਜਾਬੀ ਿਵਚ ਿਕਤਾਬ

ਅਨੁਵਾਦ ਕੀਤੀ ਹੈ ।
muṇḍē nē aṅgrēzī tōṃ pañjābī vic

kitāb anuvād kītī hai.
The boy has translated the book from

English to Punjabi.

3

{unl}
aoj(boy(icl>young person), small)
obj(eat(obj>food).@present.@sg.@male.@entry, mango)
ins(eat(obj>food).@present.@sg.@male.@entry, spoon)
agt(eat(obj>food).@present.@sg.@male.@entry, boy(icl>young person))
{/unl}

ਛੋਟੇ ਮੁੰਡੇ ਨੇ ਚੱਮਚ ਨਾਲ ਅੰਬ ਖਾਧਾ ਹੈ ।
chōṭē muṇḍē nē cammac nāl amb

khādhā hai.
The little boy has eaten the mango

with spoon.

4

{unl}
tmt(monday, friday)
tmf(work(icl>do).@custom.@present.@sg.@male.@entry, monday)
agt(work(icl>do).@custom.@present.@sg.@male.@entry, he(icl>male person))
{/unl}

ਉਹ ਸੋਮਵਾਰ ਤ ਸ਼ੁੱਕਰਵਾਰ ਤੱਕ ਕੰਮ

ਕਰਦਾ ਹੈ ।
uh sōmvār tōṃ shukkarvār takk

kamm karadā hai.
He works from Monday to Friday.

5

{unl}
via(go(icl>do).@custom.@present.@sg.@male.@entry, NewYork(icl>place))
plt(go(icl>do).@custom.@present.@sg.@male.@entry, Chicago(icl>place))
agt(go(icl>do).@custom.@present.@sg.@male.@entry, he(icl>male person))
{/unl}

ਉਹ ਿਸ਼ਕਾਗੋ ਿਨਊਯਾਰਕ ਵੱਲ ਜਾਂਦਾ ਹੈ ।
uh shikāgō niūyārak vallōṃ jāndā

hai.
He goes to Chicago via New York.

6

{unl}
plt(go(icl>do).@not.@future.@sg.@male.@entry, school)
rsn(go(icl>do).@not.@future.@sg.@male.@entry, illness(icl>thing))
agt(go(icl>do).@not.@future.@sg.@male.@entry, I(icl>person))
{/unl}

ਮ ਿਬਮਾਰੀ ਕਾਰਨ ਸਕੂਲ ਨਹ ਜਾਵਾਂਗਾ ।
maiṃ bimārī kāran sakūl nahīṃ

jāvāṅgā.
I will not go to school because of

illness.

7

{unl}
aoj:01(green(aoj>thing).@present.@sg.@male.@entry, light(icl>thing))
agt(go(icl>do).@present.@ability.@sg.@male.@entry, you(icl>person))
con(go(icl>do).@present.@ability.@sg.@male.@entry, :01)
{/unl}

ਜੇਕਰ ਬੱਤੀ ਹਰੀ ਹੈ ਤ ੇਤੂੰ ਜਾ ਸਕਦਾ ਹ ।
jēkar battī harī hai tē tūṃ jā sakdā

haiṃ.
If the light is green then you can go.

8

{unl}
obj(think.@custom.@present.@sg.@female.@entry, John(icl>person))
man(think.@custom.@present.@sg.@female.@entry, often)
agt(think.@custom.@present.@sg.@female.@entry, she(icl>female person))
{/unl}

ਉਹ ਅਕਸਰ ਜਾਨ ਬਾਰੇ ਸੋਚਦੀ ਹੈ ।
uh akasar jān bārē sōcdī hai.
She often thinks about John.

9

{unl}
frm(man(icl>person), Japan(icl>thing))
obj(meet(icl>do).@present.@past.@sg.@male.@entry, man(icl>person))
agt(meet(icl>do).@present.@past.@sg.@male.@entry, I(icl>person))
{/unl}

ਮ ਜਾਪਾਨ ਦੇ ਆਦਮੀ ਨੰੂ ਿਮਿਲਆ ਹਾਂ ।
maiṃ jāpān dē ādmī nūṃ miliā hāṃ.
I have met a man from Japan.

10

{unl}
obj(change(icl>occur).@past.@entry, paper(icl>thing).@def)
src(change(icl>occur).@past.@entry, red(aoj>thing))
gol(change(icl>occur).@past.@entry, blue(aoj>thing))
{/unl}

ਕਾਗਜ ਲਾਲ ਤ ਨੀਲੇ ਿਵਚ ਬਦਲ ਿਗਆ ਸੀ ।
kāgaj lāl tōṃ nīlē vic badal giā sī.
The paper had changed from red to

blue.

Kumar et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(3):179-196 196

sentences in their local language that are originally
written in different languages having their equivalent
UNL expressions present on the Web. This system
will also provide an opportunity to researchers
working on MT to explore UNL further as an
Interlingua.

References
Bhattacharyya, P., 2001. Multilingual Information Processing

Through Universal Networking Language. Indo UK
Workshop on Language Engineering for South Asian
Languages, p.1-10.

Blanc, É., 2005. About and around the French EnConverter
and the French DeConverter. Res. Comput. Sci., 12:157-
166.

Boguslavsky, I., Frid, N., Iomdin, L., Kreidlin, L., Sagalova, I.,
Sizov, V., 2000. Creating a Universal Networking Lan-
guage Module within an Advanced NLP System. 18th Int.
Conf. on Computational Linguistics, p.83-89.

Boguslavsky, I., Cardeñosa, J., Gallardo, C., Iraola, L., 2005.
The UNL initiative: an overview. LNCS, 3406:377-387.

Daoud, M., 2005. Arabic generation in the framework of the
Universal Networking Language. Res. Comput. Sci., 12:
195-209.

Dave, S., Parikh, J., Bhattacharyya, P., 2001. Interlingua based
English Hindi machine translation and language diver-
gence. J. Mach. Transl., 16(4):251-304.

Dey, K., Bhattacharyya, P., 2005. Universal Networking
Language based analysis and generation of Bengali case
structure constructs. Res. Comput. Sci., 12:215-229.

Dhanabalan, T., Geetha, V., 2003. UNL DeConverter for
Tamil. Int. Conf. on the Convergence of Knowledge,
Culture, Language and Information Technologies, p.1-6.

Hrushikesh, B., 2002. Towards Marathi Sentence Generation
from Universal Networking Language. MT Thesis, Indian
Institute of Technology, Bombay, Mumbai.

Keshari, B., Bista, K., 2005. UNL Nepali DeConverter. 3rd Int.
Conf. on CALIBER, p.70-76.

Lewis, M.P., 2009. Ethnologue: Languages of the World (16th
Ed.). SIL International, Dallas.

Linguistic Data Consortium (LDC), 2005. Linguistic Data
Annotation Specification: Assessment of Adequacy and
Fluency in Translations. Revision 1.5, Technical Report.

Martins, T., Rino, M., Osvaldo, N., Hasegawa, R., Nunes, V.,
1997. Specification of the UNL-Portuguese EnConverter-
DeConverter Prototype. Relatórios Técnicos do ICMC-
USP, p.1-10.

Nalawade, A., 2007. Natural Language Generation from
Universal Networking Language. MT Thesis, Indian In-
stitute of Technology, Bombay, Mumbai.

Pelizzoni, J., Nunes, M., 2005. Flexibility, configurability and
optimality in UNL DeConversion via multiparadigm
programming. Res. Comput. Sci., 12:175-194.

Raman, S., Alwar, N., 1990. An AI-based approach to machine
translation in Indian languages. Commun. ACM, 33(5):
521-527.

Shi, X., Chen, Y., 2005. A UNL DeConverter for Chinese
Universal Network Language. Res. Comput. Sci., 12:
167-174.

Singh, S., Dalal, M., Vachhani, V., Bhattacharyya, P., Damani,
O.P., 2007. Hindi Generation from Interlingua. 17th MT
Summit, Copenhagen, Denmark, p.1-8.

Sinha, R., 2005. Hindi Generation: Syntax Planning and Case
Marking. Mini Project Report, Indian Institute of Tech-
nology, Bombay, Mumbai.

Uchida, H., 2005. Universal Networking Language (UNL):
Specifications Version 2005, UNDL Foundation.

Vachhani, V., 2006. UNL to Hindi DeConverter. BE Thesis,
Dharamsinh Desai Institute of Technology, Nadiad.

Vora, A., 2002. Generation of Hindi sentences from Universal
Networking Language. BE Thesis, Dharamsinh Desai
Institute of Technology, Nadiad.

8 5 2 0
1

59
29

6
1 5

87
62

0 1 10

724

0

100

200

300

400

500

600

700

800

N
um

b
er

 o
f

se
nt

e
nc

e
s

1 2 3 4

Fluency score

Adequacy score=1

Adequacy score=2

Adequacy score=3

Adequacy score=4

Fig. 14 Distribution of adequacy scores for various
fluency scores

