
Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 449

High throughput VLSI architecture for H.264/AVC context-based

adaptive binary arithmetic coding (CABAC) decoding*

Kai HUANG†1, De MA1, Rong-jie YAN†‡2, Hai-tong GE3, Xiao-lang YAN1
(1Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China)

(2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China)

(3Hangzhou C-Sky Micro-System Company, Hangzhou 310012, China)
†E-mail: huangk@vlsi.zju.edu.cn; yrj@ios.ac.cn

Received Aug. 28, 2012; Revision accepted Mar. 6, 2013; Crosschecked May 13, 2013

Abstract: Context-based adaptive binary arithmetic coding (CABAC) is the major entropy-coding algorithm employed in
H.264/AVC. In this paper, we present a new VLSI architecture design for an H.264/AVC CABAC decoder, which optimizes both
decode decision and decode bypass engines for high throughput, and improves context model allocation for efficient external
memory access. Based on the fact that the most possible symbol (MPS) branch is much simpler than the least possible symbol
(LPS) branch, a newly organized decode decision engine consisting of two serially concatenated MPS branches and one LPS
branch is proposed to achieve better parallelism at lower timing path cost. A look-ahead context index (ctxIdx) calculation
mechanism is designed to provide the context model for the second MPS branch. A head-zero detector is proposed to improve the
performance of the decode bypass engine according to UEGk encoding features. In addition, to lower the frequency of memory
access, we reorganize the context models in external memory and use three circular buffers to cache the context models,
neighboring information, and bit stream, respectively. A pre-fetching mechanism with a prediction scheme is adopted to load the
corresponding content to a circular buffer to hide external memory latency. Experimental results show that our design can operate
at 250 MHz with a 20.71k gate count in SMIC18 silicon technology, and that it achieves an average data decoding rate of
1.5 bins/cycle.

Key words: H.264/AVC, Context-based adaptive binary arithmetic coding (CABAC), Decoder, VLSI
doi:10.1631/jzus.C1200250 Document code: A CLC number: TN919.8

1 Introduction

The ISO/IEC Moving Picture Experts Group
(MPEG) and ITU-T Video Coding Experts Group
(VCEG) jointly developed the latest video standard
H.264/AVC (ITU-T Recommendation H.264:2003)
for next generation multimedia coding applications.
Compared to existing video coding standards like
H.263 or MPEG-4, H.264/AVC provides more than
twice the compression ratio while maintaining video

coding quality. The gain in coding efficiency is due
mainly to the adoption of many new techniques, such
as multiple reference frames, weighted prediction,
deblocking filtering, and context-based adaptive en-
tropy coding. There are two approaches for context-
based adaptive entropy coding: context-based adap-
tive variable length coding (CAVLC) for both base-
line and main profiles, and context-based adaptive
binary arithmetic coding (CABAC) for main profiles
only. Compared with CAVLC, CABAC achieves
better compression efficiency, but it brings higher
computation complexity during decoding (Shi et al.,
2008). Statistical results show that it takes 30–40
cycles to decode a single bin on a DSP processor (Yu
and He, 2005). In the case of 1080P main profile

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (No. 61100074) and the Fundamental Research Funds for the
Central Universities, China (No. 2013QNA5008)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 450

video decoding, the throughput of a video coder using
CABAC reaches almost 150 Mbin/s, which makes it
difficult to implement in a programmable processor.
Therefore, an efficient hardware decoder is impor-
tant for low-power and real-time H.264 codec
applications.

The decoding process of CABAC is bit-serial
and has strong data dependency because the decoding
result of one bit always has a direct effect on the next
bin process. This dependency makes it difficult to
exploit parallelism during decoding. What is worse,
the context models of the current syntax element (SE)
are closely related to the results of its neighboring
macroblocks (MBs) or blocks, which leads to fre-
quent memory access. Research to address these is-
sues has focused mainly on two aspects: parallelism
exploitation and memory access optimization. To
improve parallelism, most solutions concatenate
multiple decode engines to decode multiple bins in
one cycle. In previous designs (Yang et al., 2006;
Yang and Guo, 2009), two- or four-bin decoding
parallelism is exploited in one cycle by using a
look-ahead decision parsing scheme for the decode
decision engine and a dual-series bypass parsing
scheme for the decode bypass engine. However, the
parallelisms are implemented simply by concatenat-
ing two decode decision engines and four bypass
decode engines, which extends the timing critical path
of the hardware circuit and restricts the CABAC de-
coder clock frequency. Another solution (Yuan, 2008)
is to employ a three-stage pipeline structure to explore
the decoding parallelism. The pipeline has to be
stalled when data dependency occurs between bin i+1
and bin i. To avoid data hazards, some predic-
tion-based pipelined architectures (Shi et al., 2008;
Kuo et al., 2011; Liao et al., 2012) have been pro-
posed to achieve high-throughput. Some methods,
such as syntax element prediction, redundant circuits,
and forwarding techniques, can be adopted to avoid
pipeline stalls. However, the design of Shi et al. (2008)
does not utilize the memory bandwidth well and each
pipeline stage contains at least one memory access,
which greatly increases the frequency of memory
access. Moreover, the decoder has to load two context
models and store one in every cycle. Thus, memory
access conflicts occur frequently and two dual-port
static random access memory (SRAM) devices have
to be used to solve them, which increases the cost of

hardware. Although the design of Liao et al. (2012)
can decode in high-rate mode, almost all context
models are stored on chips and both dual-port SRAM
and registers are used, which impose heavy hardware
costs on the gate count. Kuo et al. (2011) proposed an
area-efficient architecture, but only a single-bin en-
gine is used and the throughput is low.

Since the designs of Yang et al. (2006), Chen
and Lin (2007), Yuan (2008), and Yang and Guo
(2009) can decode more than two bins per cycle, an
efficient memory architecture for context models is
proposed to eliminate the redundant latency for con-
text accessing. Yang et al. (2006) adopted a pair of
ping-pang cache registers to improve data reusability.
Chen and Lin (2007) divided the context table into
two memory tables to be read concurrently to improve
data throughput. Both architectures need to manage
two memory blocks. Yuan (2008) rearranged the
context models to place the models used by the same
SE at the same memory address to form a cluster, and
load one cluster into a register buffer each time.
However, to load one cluster in each cycle, the data
width has to be at least 105 bits, which is difficult to
implement in a small memory. Also, two clusters
have to be frequently loaded in turn if some SEs are
decoded alternately, i.e., significant_coeff_flag and
last_significant_coeff_flag.

This paper presents a new architecture design of
an H.264/AVC CABAC decoder which rearranges
the context table memory to improve memory effi-
ciency and reduce hardware cost, and which opti-
mizes both the decode decision and decode bypass
engines to increase parallelism with a reduced timing
penalty. We have reorganized the context table into
29 groups to ensure that each group is loaded only
once during the decoding process of one MB, and
have adopted a 112-bit circular buffer to cache the
context models. Both of these changes reduce mem-
ory bandwidth dramatically. Furthermore, we have
divided the decode decision engine into two half
branches: the most possible symbol (MPS) decode
decision branch and the least possible symbol (LPS)

decode decision branch. The MPS branch is much
simpler than the LPS branch. Therefore, two MPS
branches are sophisticatedly concatenated to decode
two bins in one cycle and the critical path is kept
almost the same as that of the decode decision engine.
To provide a context model for the second MPS

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 451

branch, we propose a look-ahead context index
(ctxIdx) calculation mechanism. The decode bypass
engine is used mainly to decode two SEs, motion
vector difference (MVD) and coeff_abs_level_
minus1, encoded as UEG0 and UEG3, respectively.
According to the features of UEGk, the suffix of the
two SEs starts with a series of 1’s decoded by the LPS
branch of the decode bypass engine, which means that
only the LPS branch will be used at the first decoding.
Therefore, we have merged four LPS branches to
decode four bins in one cycle and then used two series
of decode bypass engines to decode the remaining
bins. Also, we have classified SEs into four categories
and employed different strategies to decode each
category. The proposed design can achieve from 1 to
2 bins per cycle for the decode decision engine, and
from 2 to 4 bins per cycle for the decode bypass engine.

2 Overview of CABAC decoding flow

Fig. 1 shows the CABAC decoding flow. Before
decoding the first SE in the slice data, both the context
table and CABAC decoding engine should be ini-
tialized according to the value of slice QPy and the
first nine bits from the bit stream. The SEs of each
MB can then be decoded sequentially. The decoding
flow of each SE consists of three fundamental steps:
context model selection, bin decision, and inverse
binarization.

A context model is a probability model associ-
ated with one or more bins of each SE. It is used to
store the MPS value and the parameter pStateIdx,
which is used to index the range of the LPS values.
Before deciding each bin value of an SE, the context
model index (ctxIdx) should be calculated using the
information of neighboring blocks or previously de-
coded bin values, and then the corresponding MPS
value and pStateIdx values will be loaded from the
memory of context models. Continuous updating of
context models during the whole decoding process
causes frequent memory access. Therefore, efficient
managing of context models can reduce memory
bandwidth and also improve the CABAC decoding
speed.

The bin decision flow consists of three decoding
engines, the decode decision engine, decode bypass
engine, and decode termination engine. Only one of
these engines is used while deciding one bin value
according to the SE and the type of bin (Fig. 2). The
complexity of each engine is different and each en-
gine has a different effect on the context model,
codIRange and codIOffset respectively. The termi-
nation engine is used only to decode end_of_slice_
flag and the bin in I_PCM mode. It can also be im-
plemented using the decode decision engine with
ctxIdx=276. In this study, we focus mainly on the
decode decision engine and decode bypass engine.

Each SE value is binarized according to certain
rules associated with the type of SE. When the ac-
cumulated decoded bin string conforms to one bi-
narized value of an SE, the decoding process of the
corresponding SE is over and the bin string is in-
versely binarized to generate the value of the SE ac-
cording to the binarized rules.

Fig. 2 Bin decoding flow

DecodeBin(ctxIdx)

bypassFlag==1?

ctxIdx==276?

Done

Y

N

Y

N

Decode bypass
engine

Decode decision (ctxIdx)
engine

Decode termination
engine

Initialization of the
context table

Initialization of the
probability model

CABACParsing(SE)

Set binIdx=-1

binIdx++

Obtain ctxIdx(binIdx) Step 1

DecodeBin(ctxIdx) Step 2

(b0b1...bbinIdx) in
Binarization(SE)?

Inverse Binarization
(b0b1...bbinIdx)

SE=mb_type&I_PCM

SE=end_of_slice_flag=1

Other SEs

N

Y
Step 3

Fig. 1 Context-based adaptive binary arithmetic coding
(CABAC) decoding flow (SE: syntax element)

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 452

3 Optimization techniques

To decode one bin, the corresponding context

model should first be loaded and then the updated
value has to be written back. Both actions increase the
frequency of memory access. The decoding process
of each bin needs to call one of the three arithmetic
decoding engines. The decode decision engine, used
for most SEs, is quite complex and thus becomes the
critical timing path of VLSI design. To improve the
throughput of bin decoding, several engines are
sometimes concatenated (Yang and Guo, 2009),
which makes the critical timing path even longer.
Based on this analysis, the bottlenecks for efficient
CABAC decoding are the maintenance of context
models and arithmetic decoding. In this section, we
analyze the characteristics of CABAC decoding and
present the techniques used in our VLSI architecture.
Some terms used in the rest of the paper are defined as
follows: codIRange is the width of the current interval,
codIOffset is the position of the current bin at
codIRange, rMPS is the estimated probability interval
of the MPS, and rLPS is the estimated probability
interval of the LPS.

3.1 Arithmetic engine division and reorganization

Fig. 3 shows the workflow of the decode decision
engine. It consists of four main parts, range calculation
(RanCal), LPS decoding branch (LPSDecB), MPS
decoding branch (MPSDecB), and renormalization
(Renorm). We find that the complexity of MPSDecB
is much lower than that of LPSDecB. When the LPS
branch is selected, both codOffset and valMPS are
re-calculated before the renormalization stage, while
the MPS branch does nothing with these two values.
According to the H.264/AVC standard (ITU-T
Recommendation H.264:2003), the highest value of
rLPS is 240 and the lowest value of codIRange before
decoding is 256, which means that the value of rMPS
is not less than 16 (rMPS=codIRange −rLPS).
Therefore, when the MPS branch is selected, the re-
normalization process is quite simple and needs to
shift only 4 bits at most, while the LPS branch needs
to shift 7 bits. According to our analysis, the renor-
malization process of LPSDecB is about twice as
slow as that of MPSDecB. We can decode two bins if
both continuous bins select the MPS branch and keep
the decoding critical timing path the same as that of
the decode decision engine.

To employ the simple operation of the MPS
branch and to decode two bins in certain conditions,
we divide the decode decision engine into four parts,
RanCal, LPSDecB, MPSDecB, and Renorm (Fig. 3a)
and reorganize these four parts into a new decode
decision engine. Fig. 3b illustrates the workflow of
the new engine. The LPS branches and the two series

Fig. 3 Workflow of the decode decision engine (a) and
the new engine (b)

DecodeBin(ctxIdx)

rLPS=rLPSTab(codIRange,pStateIdx)
rMPS=codIRange rLPS

codIOffset>=
rMPS?

binVal=!valMPS
codIOffset=codIOffset rMPS

codIRange=rLPS

pStateIdx==0?

valMPS=1
valMPS

pStateIdx=
transIdxLPS[pStateIdx]

binVal=valMPS
codIRange=rMPS

pStateIdx=
transIdxMPS[pStateIdx]

Renorm

LPS decoding branch

 MPS decoding branch

Range calculation

Renormalization

Y N

Y

N

DecodeBin(ctxIdx)

RanCal

codIOffset rMPS

LPSDecB

MPSDecB

MRenorm

DecodeBin(ctxIdx)

RanCal

codIOffset
>=rMPS?

MPSDecB

MRenorm

LRenorm

1C1 2 3 C2

Result selection

Sign
bit

(a)

(b)

codIOffset=

codIOffset
>=0?

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 453

of MPS branches are designed to be processed in
parallel. Two comparison results between codIOffset
and rMPS are used to select the decoding results.
When comparison results ‘C1’ and ‘C2’ are both ‘No’,
the decoding results ‘2’ and ‘3’ are valid; otherwise,
only one bin is decoded from either result ‘1’ or ‘2’.
From Fig. 3b, we can see that two ctxIdxs should be
calculated to decode two bins in each cycle for the
right branch. To solve this problem, we propose a
look-ahead ctxIdx calculation mechanism. The
working mechanism of the look-ahead ctxIdx calcu-
lation logic is explained in Section 3.3.

3.2 Improvement of context module buffer access

Many memory access operations are involved in
decision decoding. During the process of decoding
each bin, the corresponding context model should be
loaded and its updated value has to be written back. If
we want to decode more than one bin per cycle, the
memory architecture for accessing context modes
should be designed more efficiently. It takes at least
two cycles to load the context model from random
access memory (RAM) and write the updated value
back to RAM to maintain one context model. There-
fore, we have reorganized the entire table of context
models for H.264, decoding into 29 groups according
to the decoding characteristics of the SEs, and each
group contains at most 16 context models. Each
context model comprises a 6-bit pStateIdx and a 1-bit
MPS. Moreover, a 112-bit circular register buffer is
designed to read and write context memory in a more
flexible way. At the start of decoding, the first group
of context models is loaded into the circular buffer.
When more than 28 bits (corresponding to a word
address in the memory of the context model) need to
be recycled, the new value of the corresponding
context models will be updated into memory, and the
next group will be loaded to fill the empty space. The
circular buffer is maintained like an infinitely large
memory for the context model, which greatly im-
proves the memory access efficiency of the decode
engine.

Compared with the previous approach of context
model rearrangement (Yuan 2008), which causes
some groups to be loaded frequently, we have
adopted three techniques to ensure that each group is
updated only once during the decoding process of
these SEs in one MB:

1. The context models of one SE are divided into
different memory groups according to different slice
types. A total of 24 context models are used for syntax
element ‘mb_type’ (eight, seven, and nine models are
used for the I slice, P slice, and B slice, respectively).
Using this technique, only the necessary memory
group is loaded for a given slice type. We can thereby
reduce memory access operations for context models
as much as possible and make full use of the loaded
data.

2. The context models of continuous SEs are
combined into one group until there are 16 context
models. For example, some SEs like mb_type of I
slice, intra_chroma_pred_mode, prev_intra4×4_pred_
mode_flag, and rem_intra4×4_pred_mode_flag, ap-
pear continuously in the bit streams and can be allo-
cated to the same group. This technique ensures that
each group needs to be loaded and written back only
once during decoding one MB.

3. SEs that appear in pairs are combined into one
group. The context models with ctxIdx from 105 to
165 are all used for the SE significant_coeff_flag
while those with ctxIdx from 166 to 212 are used for
SE last_significant_coeff_flag. The two kinds of SEs
appear alternately in the bit streams and use the same
method to calculate their ctxIdx. We organize the
corresponding context models of these SEs into one
group; e.g., the context models of SE significant_
coeff_flag with ctxIdx 105–112 and those of SE
last_significant_coeff_flag with ctxIdx 166–173 form
one group.

With these techniques, the frequency of access to
the memory of the context models is greatly reduced.
Compared to the designs of Shi et al. (2008) and Yuan
(2008), the frequency of memory access is reduced by
almost 70% and 30%, respectively. Taking advantage
of the circular buffer, more than one model can be
referred to at the same time, making it possible to
decode two bins in one cycle.

3.3 Division of the syntax element

Before decoding each bin, it is necessary to
calculate ctxIdx (Fig. 1). To decode two bins per
cycle when both are MPS, it should be able to calcu-
late two ctxIdxs in certain conditions. However, the
method to calculate ctxIdx depends largely on the
type of SE, and even the previous decoded bin. In
some cases, even if two continuous MPSs occur, the

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 454

SE does not need to decode two bins at a time; i.e.,
mb_skip_flag is a 1-bin SE. According to the analysis,
we divide the SEs into four categories and an appro-
priate ctxIdx calculation strategy is adopted according
to the category type. Table 1 shows the four catego-
ries of SE.

1. One-bin SE
In this condition, we need to calculate only one

ctxIdx. The other ctxIdx calculation logic and the
second MPS decoding logic (MPSDecB) (Fig. 3b)
should be disabled for power saving. The decoded
value is chosen only from values ‘1’ and ‘2’ accord-
ing to the comparison result ‘C1’.

2. SE depending on the previous bin
To decode two bins in each cycle, we propose a

look-ahead ctxIdx calculation scheme for these SEs.
For the SEs in this category, the ctxIdx of the second
bin depends on the value of the first bin and the sec-
ond MPSDecB is valid only when the MPS occurs in
the first one. So we calculate the ctxIdx of the second
bin in advance on the assumption that the first bin hits
the MPS condition.

3. SEs appearing in pairs
For this SE category, the second SE needs to be

decoded only when the previous SE value is equal to
the designated value. Therefore, the second bin’s SE
type depends largely on the value of the previous bin.
For example, the SE last_significant_coeff_flag

needs to be decoded only when the previous SE sig-
nificant_coeff_flag is equal to 1. When significant_
coeff_flag is 0, the next SE is also significant_
coeff_flag. In this condition, the look-ahead ctxIdx
calculation scheme works in the same way as we
decide the SE type of the next bin according to the
current MPS value. If the current value of MPS is 0,
we calculate the ctxIdx of significant_coeff_flag
while that of last_significant_coeff_flag is calculated
when MPS is 1.

For other SEs, only the ctxIdx of the first bin
depends on the neighboring information and others
are related only to the bin index (binIdx). Therefore,
we can calculate the ctxIdx of two bins without any
stall.

3.4 Neighboring information simplification and
pre-fetching

The calculation process for ctxIdx uses the SE
information from the left and top MB or MB pairs,
which also induces a large overhead in memory ac-
cess. Furthermore, in the main profile that adopts
MBAFF, the SE information of two-line MBs should
be stored. For 1080P video, the MB number for one
line is 68 and the complete SE information used by a
CABAC decoder for one MB is 267 bits. Hence, it
costs more than 4 KB to store the neighboring SE
information. To reduce the on-chip memory cost,
neighboring information should be stored in off-chip
memory. However, it is necessary to access neigh-
boring information efficiently to accelerate the de-
coding of the CABAC decoding engine, while keep-
ing power consumption low. To improve efficiency,
two techniques are proposed in our architecture:
syntax information simplification and neighboring
information pre-fetching.

According to the referred characteristics, we find
that it is not necessary to use the complete SE infor-
mation. Taking MVD as an example, at most 52 bits
are required to store the complete information of the
MVD for one 4×4 block. In fact, during the calcula-
tion of ctxIdx, values greater than 32 are treated as the
same. Therefore, only 6 bits are needed to indicate
one direction of MVD and the total bit number used to
store the information of one 4×4 block is 24. In this
case, we can reduce the memory size by half and
reduce memory access operations from two to one
(provided that the memory data width is 32 bits). By
exploiting the simplification technique for all SE

Table 1 Category of the syntax elements

Group
ID

Group
description

Related syntax element

1 SE has only one bin mb_skip_flag,
mb_field_decoding_flag,
coeff_sign_flag,
end_of_slice_flag,
coded_block_flag

2 The ctxIdx of the
current bin depends
on the value of the
previous bin

mb_type(I, P, B),
sub_mb_type(B),
coded_block_pattern

3 Two one-bin SEs
appear in pair

prev_intra4×4_pred_mode_flag,
rem_intra4×4_prev_mode_flag,
significant_coeff_flag,
last_significant_coeff_flag

4 Others sub_mb_type(I, P),
mvd_x, mvd_y,
ref_idx_l0, ref_idx_l1,
mb_qp_delta,
intra_chroma_pred_mode

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 455

information of one MB, the size can be reduced from
267 to 138 bits, which saves almost 50% of memory
consumption.

Even with SE information simplification, the
decoder efficiency is affected by the latency of the
off-chip memory access. Therefore, a second tech-
nique of data pre-fetching and buffering is adopted to
hide the long latency of off-chip memory access. The
pre-fetching technique is proposed based on the fact
that for decoding many SEs, only the ctxIdx of the
first bin depends on the neighboring information. The
others are fixed or related only to the pre-
decoding bin. When decoding non-first bins, the
neighboring information of the next SE can be
pre-fetched from off-chip memory to the on-chip
buffer. Similar to the context model buffer, a 64-bit
circular buffer is used to store the neighboring SE.
However, there are two cases in which the pre-
fetching technique does not work: (1) when the cur-
rent decoding SE contains only one bin; or (2) when
the type of the next SE depends on the result of the
current SE. In the first case, if the width of the SE is
only one bin, it depends mostly on only one bit of the
neighboring information. Thus, neighboring infor-
mation of several SEs can be fetched together and
stored in the buffer. In the other case, the prediction

is used to decide which SE’s neighboring information
should be fetched. If the prediction turns out to be
wrong, the fetched data will be flushed and the correct
neighboring information will be loaded.

4 Hardware implementation of the CABAC
decoder

Based on the proposed optimization techniques,
the hardware architecture for the CABAC is shown in
Fig. 4. The CABAC CTRL module acts as a central
controller of the H.264/AVC CABAC decoder. It
provides control signals for three circular buffers to
offer corresponding information for the decoding
engines and manages the decoding flow of the SE.
The CABAC CTRL selects the correct neighboring
information for the Ctx circular buffer. It will also
decide how many decoded bins are valid in this cycle
according to the values of sign bit 1 and sign bit 2,
which correspond to the comparison results in Fig. 3b.
The Ctx circular buffer calculates the context indexes
of both the current and next bins on the assumption
that the decoding value of the current bin hits MPS.
Two pStateIdxs are provided to the decode decision
engine (Fig. 4). NSE, Ctx, and BS buffers offer

 Fig. 4 The proposed context-based adaptive binary arithmetic coding (CABAC) architecture

CABAC
CTRL

O
ff-

M
e

m

NSE

Ctx

BS

Ctx Cal

CtxIdx

Fetch back Ctx model p
S

ta
te

Id
x_

1

-

codIRange

Decode engine

codIOffset

codIRange

[7:6]

RenormMPS
(shift0-4)

-
RenormMPS

(shift1-7)

LUT
(transIdxLPS)

LUT
(transIdxMPS)

codIRange1_MPS
codIOffset1_MPS

codIRange_LPS
codIOffset_LPS

Sign bit 1

pStateIdx1_MPS

pStateIdx1_LPS

pStateIdx_2
-

[7:6]

RenormMPS
(shift0-4)

codIRange2_MPS
codIOffset2_MPS

-

LUT
(transIdxMPS)

pStateIdx2_MPS

Sign bit 2

co
dI

R
a

ng
e_

M
P

S

Bit stream

1

1

1

1

Stream_PC

va
lM

P
S

1
va

lM
P

S
2

pS
ta

te
Id

x

SE

3

2
3

Sign bit 2

Sign bit 1
2

C
C

NSE_PCSE_type

pStateIdx1_MPS Serial bypass decoder
binVal

6

BsNum_bp

3

co
dI

R
a

ng
e

1
_b

p

B
I

pStateIdx2_MPS
pStateIdx2_MPS

Inverse-binarization engine

dec_binval

dec_end

CABAC decoding
engine

Path 2

Path 1

L
U

T
(T

a
bL

sp
)

co
d

IO
ff

se
t_

M
P

S

co
dI

O
ffs

et
1_

bp

LU
T

(T
ab

Ls
p

)

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 456

neighboring SEs, context models, and bit stream,
respectively, for the CABAC arithmetic engine. They
are all organized as circular buffers, which act as
infinitely large buffers and serve as an interface be-
tween the off-chip DRAM and the hardware decoder.
All buffers share the bus interface (BI) to access
DRAM alternately. The inverse-binarization module
accepts the decoded bin string and decides whether
the decoding process of the current SE has been ter-
minated. There are two decoding engines, the decode
bypass engine and the decode decision engine. The
decode bypass engine consists of two decoding cores,
a head zero detector, and two series of decode bypass
engines, which aim to decode different parts of the
SEs. The decode decision engine is composed of two
concatenated MPS branches and one LPS decoding
branch; when the values of two serial bins are both
located in the MPS range, it is able to decode two bins
in one cycle.

4.1 Circular buffer

During the CABAC decoding, four types of
memory access are required: (1) read bit stream; (2)
fetch neighboring SE; (3) load context models; (4)
update context models. To reduce the on-chip mem-
ory size, all of the above information is stored in
off-chip memory in the proposed architecture. But if
the data is fetched each time, it brings long latency
and a large amount of extra power consumption
caused by frequent visits to the external memory. A
circular buffer is introduced to solve these problems.
It serves as a bridge between the off-chip memory and
on-chip CABAC decoding. All three buffers are or-
ganized in a similar way. The buffer of context models
contains at most 112 bits for 16 context models (each
context model consists of 7 bits). There are five
pointers: context counter (CC) and four water-level
markers pointing to each 28-bit position (Fig. 5).

The moving step of the CC is controlled by the
CABAC controller model. There are two conditions
to increase CC: (1) One SE decoding completes and
then CC points to the context model of the next SE; (2)
The pointed context model will not be used any more
in current SE decoding. Four water-level markers are
used to trigger the replacement behavior of context
models and they are fixed to four pointers address27,
address55, address83, and address111, respectively.
The circular buffer contains a self-refilling mecha-

nism. Each time the CC steps over one water-level
marker, the refilling process will be carried out: the
updated context models in the buffer are written into
the memory and new ones are fetched.

Fig. 6 shows the organization architecture of
context models in the memory and the buffer refilling
process. All context models are divided into four
categories according to the slice type and cabac_
init_idc value. Each category is organized into 29
groups in the same way, according to the rules given in
Section 3.2. In Fig. 6, the SEs, mb_type (I_Slice),
intra_chroma_pred_mode, prev_intra4×4_pre_mode
_flag and rem_intra4×4_pred_mode_flag are organ-
ized into group 3, while code_block_pattern and
mb_qp_delta are organized into group 5. If mb_type is
intra (provided that it is true in the given example), the
SEs listed above are decoded in sequence. After de-
coding the SE mb_type, the context models with an
index of from 3 to 10 are not used any more in this
MB level decoding. So they are written back into the
memory and the context models of group 5 are loaded
to fill the empty place. Fig. 6 shows the refilling steps.
In some conditions, the type of the next decoding SE is
unknown when the buffer has empty space. Therefore,
one key problem that needs to be solved is deciding
which group of context modules should be fetched for
the context buffer refilling process. When the next
group of context modules is unknown, the prediction
technique is used to pre-fetch the context models. If
the prediction is wrong, the filled buffer will be
flushed and correct ones are fetched.

The circular buffers of bit stream and neighbor-
ing SE are organized in a similar way, except that they
have no write-back logics. For the stream buffer, the
bits will not be used any more after its decoding.

Fig. 5 Circular buffer

1110

27

55

83

.

.

.

.

.
.

.

.

.

.

.
.

BI

RD_DATA

ADDR

CTRL

CC
Marker 3

Marker 0

Marker 1

Marker 2

pStateIdx1/2

MpsVal1/2

ct
xS

el
1/

2

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 457

Therefore, the write-back operation is saved. As for
the neighboring SE, the writing logic of the current
decoding SE is shared with other parts of bit stream
parsers. Moreover, the bit stream buffer is 128 bits,
which can also be used for CAVLC decoding, similar
to the design of Xu et al. (2006). But the buffer size of
the neighboring SE is only 64 bits. By using the cir-
cular buffer structure, performance is maintained as if
there is an infinite buffer providing continuous in-
formation to the CABAC arithmetic logic.

4.2 Re-normalization engine based on a head-one
detector

The last step of the decode decision engine flow is
renormalization (Fig. 3). To keep the precision of the
whole decoding process, the refined codIOffset and
codIRange have to be renormalized to ensure that the
codIRange is not less than 256. For example, if the
refined codIRange is 9’b000011010, the codIRange
should be shifted four bits while the codIOffset reads
four bits from the bit stream during the renormalization
process. Based on the principle of renormalization, we
find that if we locate the first appearing ‘1’ inside the
codIRange, we can successfully decide the number

of bits of the codIRange to shift and of the codIOffset
to read. Moreover, the renormalization process is part
of the critical timing path in CABAC hardware de-
coder implementation. To improve clock frequency,
this path must be kept as short as possible. Thus, a
parallel ‘head-one detector’ re-normalization archi-
tecture is proposed (Fig. 7). Nine bits of the codI-
Range are split into three parts (3-bit vector), each of
which determines whether there is a ‘1’ among three
input bits. These results determine which part should
be further tested. Compared with previous designs
(Yang et al., 2006; Yang and Guo, 2009), the
re-normalization path is reduced by almost 50%.

4.3 Bypass decoding engine based on a head-zero
detector

The bypass decoding engine is used mainly to
decode the suffix of two syntax elements, i.e., MVD
and coeff_abs_level_minus1, which account for more
than 90% of the whole CABAC decoding (Chang and
Lin, 2009). Therefore, improving the bypass decod-
ing engine throughput may increase the CABAC
decoding efficiency greatly. The bypass mode is
relatively simple, since it is not necessary to access

I_SLICE cabac_init_idc=0 cabac_init_idc=1 cabac_init_idc=2

......Group 0 Group 3 Group 4 Group 5 Group 28 Group 29

3-6 7-10 64-67 68, 69

mb_type mb_type
prev_intra

4×4
rem_intra

4×4

73-76 77-80 81-84 60~63

cbp(luma) cbp(crcb) cbp(crcb)
mb_qp_

delta

3
4

5

6

7

8

9
1064

65

66

67

68

69

R
R

1110

56 55

.

.

.
.

.

.

CC

Before decoding mb_type

73
74

75

76

77

78

79
8064

65

66

67

68

69

R
R

1110

56 55

.

.

.
.

.

.

CC

Decoding
 mb_type

After decoding mb_type

Store 3-6
1

2

Load 73-763
Store 7-10

4

Load 77-80

73
74

75

76

77

78

79
8081

82

83

84

60

61

62
63

1110

56 55

.

.

.
.

.

.

CC

After decoding rem_intra

Fig. 6 Architecture of context models in memory and the buffer refilling process

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 458

context models, and the codIRange and codIOffset
are updated simply. We can merge several engines to
decode several continuous bins so that the decoder
can process them in parallel to increase data
throughput. To improve the parallelism, Yang and
Guo (2009) adopted four series of bypass decoding
engines to decode four bins in each cycle. However,
their method does not balance the critical path with
the decision decode engine, and decreases the fre-
quency of the whole decoder. To keep the critical
timing path balanced with the proposed decode deci-
sion engine, we merge two series of normal bypass
engines to decode the bins in parallel.

Both MVD and coeff_abs_level_minus1 use
UEBk (kth order Exp-Golomb) binarization process,
which has a sequential feature in that the suffix is

composed of a series of 1’s followed by a ‘0’, and the
length of the remaining bins depends on the length of
1’s. Furthermore, according to the decode bypass
engine mechanism, the bin value ‘1’ must be decoded
by the LPS branch of the decoder. Hence, we propose
a new bypass decoding architecture that consists of
two parts: a head-zero detector with an optimized LPS
branch of the bypass decoding engine to locate the
first appearance of ‘0’, and then two series of normal
decode bypass engines to decode the remaining bins.
According to the statistical results shown in Fig. 8, for
most video sequences, about 90% of the syntax ele-
ments coding with UEBk contain no more than four
continuous 1’s. Therefore, we propose a head-zero
detector to locate ‘0’ in each four bits. Fig. 9b shows
the working mechanism of our bypass decoding
engine.

In the original bypass decoding mode, the num-
ber of decoding cycles is the same as the length of
bins; i.e., it takes 15 cycles to decode the binary se-
quence (Fig. 9a). Shi et al. (2008) merged the bypass
decoding algorithm to decode two successive bins at
the same time, while keeping the critical decoding
path short. However, their method does not explore
the binarization features of SEs. Our hardware ar-
chitecture explores the features of UEBk binarization
to decode four 1’s in one cycle and two bins for the
remaining bins. It maintains the bypass decoding
critical path balance with the decode decision engine,
while increasing the throughput greatly. Fig. 10
shows the architecture of the proposed bypass de-
coder. A bypass controller module is responsible for

Fig. 7 Re-normalization engine based on a head-one
detector

Fig. 8 Percentage of UEBk coding syntax elements with no more than four continuous 1’s

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 459

deciding the bypass decoding engine, i.e., a head-
zero detector or serial bypass engines. When the de-
coded bins are sent to the CABAC CTRL module
with dec_bins, an extra signal named val_num is set
to indicate the real valid bins.

4.4 Decode decision engine

According to the analysis in Section 3.1, a re-
organized decode decision engine is proposed with
two concatenated MPS branches and one LPS branch.
The proposed engine can be treated as one complete
normal decode decision engine and one look-ahead
decoding MPS branch (Fig. 4). When the first bin is
decoded in the normal way, the second bin is decoded
in the extra MPS branch on the assumption that the
MPS branch is hit for the first bin. Yang and Guo
(2009) proposed a similar look-ahead architecture

consisting of two normal decode decision engines, but
the decoding of two bins in one cycle takes more time
than in our design. Also, its critical path is similar to
two series of the decision decoder engine. Therefore,
the clock frequency of its architecture is restricted. In
our design, the critical timing path is almost the same
as that of one decode decision engine. There are three
different decoding properties in the proposed engines:
(1) The LPS branch of the engine is taken; (2) Only
the MPS branch of the normal decode decision engine
is taken; (3) Both the normal engine and look-ahead
decoding MPS branch are taken. The first two prop-
erties take path 2 as the critical path, while the last one
takes path 1 (Fig. 4). Path 1, which consists of three
9-bit minus operators and one MPS renormalization
module, is the actual critical timing path of the pro-
posed engine. When two serial MPS values are

Fig. 9 Working mechanism of the new bypass decoding engine

0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 0

1 0 1 0 1 1 0

Start

End

(a) Bit stream

1 1 1 1 1 1 1 0

1 0 1 0 1 1 0

(b) Proposed decoding step

Head 0
detector

Head 0
detector

Two series of bypass decoder

codIOffset|read(4) >= 4*codIRange 1111

codIOffset|read(3) >= 3*codIRange 1110

codIOffset|read(3) >= 2*codIRange 110

codIOffset|read(3) >= codIRange 10

High

Low

Fig. 10 Architecture of the new bypass decoder

-- --

x2x3x4 codIRange

Read(4) Read(3) Read(2) Read(1) codIOffset

codIOffset

1111 1110 0110 0010 0000

Priority
dec

Sign bit

codIRange

Decode engine

codIOffset
codIOffset

Head zero detector

dec_bin

4

Bypass
decoder

Bypass
decoder

bypass
ctrl

[0]

[1]

dec_bin

2

1

1

m
o

de
_

se
l

dec_bin[3:0]

4

val_num[1:0]

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 460

selected as the results of decoding bins, two bins can
be decided at the same time. Otherwise, only the
decoding value from the normal engine is selected.

5 Experimental results

We have implemented the CABAC hardware

decoder with these proposed optimization techniques
in synthesizable Verilog HDL, and integrated it into
the whole H.264 decoder with other parts of our de-
sign (Li et al., 2010; 2011; Ma et al., 2011). Table 2
shows the experimental results of the average number
of processing bins in each cycle with different QP and
frame structures. All the test sequences generated by
H.264/AVC reference software had the 4:2:0 color
format and a frame rate of 30 frames/s. The

performance results show that the average data
processing rate of our design can achieve about 1.5
bins per cycle and the decoder has better performance
for 1080P video sequences with high bit-rate coding.
Furthermore, the RTL codes of the CABAC decoder
were synthesized using a Synopsys Design Compiler
with the SMIC18 silicon process library. In the worst
case, the maximum frequency of our design can reach
250 MHz. The throughput of the proposed decoder is
375 Mb/s, which is fast enough to support the H.264
Main Profile @L4.2.

Two key optimization strategies, circular buffer
and pre-fetching, were adopted to reduce the DRAM
access times and accelerate data fetching in our de-
sign. Two experiments were added to illustrate the
efficiency of these two techniques by counting the
DRAM access times and latency. A DRAM model

Table 2 Average data processing rate of the proposed decoder

Bit rate (Mb/s) Data processing rate (bin/cycle) Picture
type

Picture
name

QP
IPPP IBBBP IIII IPPP IBBBP IIII

28 1.73 1.62 5.28 1.52 1.53 1.51

20 3.25 3.87 8.73 1.49 1.53 1.62

Flower

12 6.39 7.27 13.10 1.51 1.57 1.75

28 0.84 0.96 4.03 1.47 1.48 1.47

20 1.42 2.16 7.46 1.45 1.49 1.53

Paris

12 4.07 5.06 12.80 1.48 1.54 1.64

28 0.81 0.67 3.75 1.49 1.52 1.48

20 1.33 1.93 8.30 1.48 1.51 1.51

CIF

Waterfall

12 5.20 6.16 14.60 1.50 1.53 1.59

28 2.09 2.58 8.84 1.51 1.52 1.51

20 9.01 9.58 19.30 1.51 1.51 1.51

Soccer

12 25.20 25.50 36.60 1.49 1.52 1.58

28 0.89 1.04 3.26 1.49 1.49 1.47

20 2.81 3.37 8.17 1.48 1.49 1.50

Ice

12 11.80 12.20 20.80 1.47 1.49 1.55

28 2.39 2.68 11.20 1.49 1.52 1.48

20 10.30 11.50 23.30 1.51 1.52 1.51

4-CIF

City

12 28.70 29.70 42.30 1.48 1.51 1.59

28 35.9 23.1 34.5 1.55 1.58 1.53

20 50.8 57.6 71.8 1.59 1.58 1.54

Sky

12 127.0 134.0 152.0 1.59 1.59 1.60

28 48.6 45.5 60.9 1.54 1.55 1.55

20 147.0 148.0 168.0 1.50 1.51 1.51

Duck

12 298.0 297.0 310.0 1.54 1.54 1.56

28 30.1 30.4 33.9 1.58 1.57 1.57

20 73.7 74.9 84.3 1.52 1.52 1.54

1080P

River

12 170.0 171.0 185.0 1.54 1.54 1.55

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 461

was included in the simulation. It took 10 cycles to
access an address not related to the previous address
and one cycle delay for burst accessing a continuous
address. Table 3 shows the contribution of these
strategies to a reduction of about 41% in memory
bandwidth and 90% in latency for data fetching. The
reduction of memory access times is gained mainly
from the context models buffer, which avoids ineffi-
cient updating of context models. The pre-fetching
technique is able to efficiently hide the data latency.
When the type of the next SE depends on the result of
the current one, the prediction technique is adopted to
pre-fetch the context models or neighboring infor-
mation. The prediction accuracy of context models
and neighboring information is shown in Table 4.

Moreover, by exploiting the feature of the de-
code decision engine that the MPS branch is much
simpler than the LPS branch, our design concatenated
two MPS branches while keeping the LPS branch the
same. If two series of MPS occur, the new decode
decision engine can decode two bins in one cycle. The
time ratio in which the engine decoded two bins in
one cycle for different QP and frame structures is
shown in Fig. 11. In almost 70% of the decoding time,
the throughput of the engine was 2 bins per cycle.
From the experimental results, the decoding speed is
clearly higher for video sequences with higher time
ratios for two-bin decoding. We can conclude that the
proposed decode decision engine with two concate-
nated MPS branches is quite efficient.

Table 4 Prediction accuracy of context models and
neighboring information pre-fetching*

Hit_rate (%)** Picture
type

Picture
name

QP
Ctx Nei

28 91.9 89.1

20 92.3 89.4

Flower

12 90.4 89.8

28 88.6 83.4

20 89.2 85.1

Paris

12 90.0 87.8

28 93.5 90.1

20 89.4 85.5

CIF

Waterfall

12 96.1 93.1

28 92.6 89.1

20 93.3 90.0

Soccer

12 96.0 92.4

28 88.6 83.7

20 87.9 82.9

Ice

12 89.9 85.1

28 91.4 88.0

20 95.8 92.3

4CIF

City

12 96.8 92.3

28 91.9 92.0

20 92.5 92.3

Sky

12 97.1 97.8

28 94.9 92.8

20 98.5 94.1

Duck

12 98.7 96.2

28 96.9 96.3

20 97.6 93.0

1080P

River

12 98.1 94.1
* For IBBP frame structure. ** hit_rate=(valid pre-fetching
times)/(total pre-fetching times)×100%

Table 3 Reduction in DRAM access using the circular buffer*

DRAM access times per frame Data fetching penalty (cycle/frame)** Picture
type

Picture
name No buffer With buffer Reduction (%) No buffer With buffer Reduction (%)

Flower 28 062 16 502 41.2 84 768 7005 91.7

Paris 17 353 10 089 41.9 55 903 6324 88.7 CIF

Waterfall 20 273 11 481 43.4 66 830 6827 89.8

Soccer 92 833 52 949 43.0 318 544 19 845 93.8

Ice 35 176 19 928 43.3 107 560 14 909 86.1 4CIF

City 107 435 61 471 42.8 326 359 17 215 94.7

Sky 462 700 269 012 41.9 1 514 699 107 127 92.9

Duck 989 515 588 275 40.5 3 141 291 66 760 97.9 1080P

River 630 603 364 723 42.2 1 973 758 62 057 96.9
* For IBBP frame structure, QP=20. ** The penalty of data fetching is the cycle cost between the data request and the data acquisition;
when the information has been in the circular buffer, the penalty equals zero

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 462

Table 5 shows a comparison of results from our
proposed design with those from existing methods.
The design of Kuo et al. (2011) achieved the lowest
hardware cost by optimizing the memory system.
However, it applies only to a single-bin engine and
sacrifices the utilization of two-bin arithmetic de-
coding engines for some SEs, and decodes only 0.95
bins per cycle on average. Although the design of
Liao et al. (2012) achieved the highest throughput, the
pipeline-based architecture and on-chip storage of
context models increase the hardware cost on gate
count greatly. Also, its context model fetching logic is
more complicated since there are two memory
sources of context models. Compared with previous
methods, our design provides high throughput while
keeping the area cost low (with the highest throughput
per second per thousand gates). By using three cir-
cular buffers, our design reduces the on-chip SRAM
to zero. The buffers can provide continuous informa-
tion for the engines in most cases. In addition, unlike
the designs of Yang et al. (2006) and Yang and Guo
(2009), whose critical timing paths are about equal to
the length of two decode decision engines or four
decode bypass engines, the critical path of our design
is quite similar to the length of one decode decision
engine. Therefore, in a similar silicon process, the
maximum clock frequency of our design is increased
by 50% compared with the results of previous studies
(Yang et al., 2006; Yang and Guo, 2009). Further-
more, the hardware cost of our design is 28% less than
those of Shi et al. (2008) and Yuan (2008), whose
high hardware overheads are caused mainly by com-
plicated hardware pipelines.

Fig. 11 Time ratios in which the engine decodes two bins
at one cycle
(a) IPPP frame structure, QP=28; (b) IBBP frame structure,
QP=20; (c) IIII frame structure, QP=12. Time ratio of
two-bin decoding=(number of two-bin decoding cycles)/
(total number of decoding cycles)×100%

(a)

0

10

20

30

40

50

60

70 4CIF 1080P

(b)

Flower
Paris

Soccer
Ice

City Sky
Duck

Waterfa
ll

River

(c)

CIF

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

80

Table 5 Comparison between different designs

CABAC decoder
Frequency

(MHz)
Throughput

(Mb/s)
Technology

Gate count
(×103)

Memory
type

Memory
size (KB)

Throughput
(Mb/(s·kgate))d

Proposed design 250 375 SMIC18 20.71a N/A N/A 18.1
Liao et al. (2012) 264 446–485 UMC90 51.276 DP+Reg DP: 0.179;

Reg: 0.222
8.6–9.4

Kuo et al. (2011) 150 143–239.4b UMC90 16.291c SP 3.36 7.3–12.2
Chang and Lin (2009) 200 60–100 TSMC18 138.226 N/A N/A 0.43–0.72
Yang and Guo (2009) 140 120.4 TSMC18 34.955 SP 0.43 3.40
Shi et al. (2008) 200 254 18 μm 29.0c DP 10.81 6.4
Yuan (2008) 250 160 TSMC18 35.6 SP 0.49 4.5
Chen and Lin (2007) 137 N/A TSMC13 40.762 N/A N/A N/A
Yang et al. (2006) 120 253–462 TSMC18 83.157 N/A N/A 3.1–5.6
Yu and He (2005) 150 N/A 18 μm 30 N/A 0.42 N/A

a All of the register-based circular buffers are included in the total gates of the design; b In the best case, the maximum throughput will achieve
239.4 Mb/s by increasing the frequency to 249 MHz; c The on-chip SRAM is not included in the gate count of the designs; d The memory size
is considered as part of the total gate size when calculating the throughput per second per thousand gates. SP: single port; DP: dual port

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(6):449-463 463

6 Conclusions

We have presented a new reorganized decode

decision engine with look-ahead ctxIdx calculation
logic to improve performance by decoding two bins
simultaneously. In the proposed architecture, two
MPS decoding branches are concatenated while
keeping the critical timing path as one decode deci-
sion engine. Look-ahead logic is adopted to calculate
the ctxIdx for decoding the second bin on the as-
sumption that the first bin is the MPS value. Ex-
perimental results show that the engine can decode
two bins simultaneously in almost 70% of decoding
cycles. For the decode bypass engine, four LPS
branches are merged to decode the beginning 1’s of
UEBk encoding syntax elements, and two concate-
nated normal bypass engines are adopted to decode
other bins. We have also proposed three techniques to
divide the 459 context models into 29 groups, and
have used three circular buffers to cache one group of
context models, neighboring information, and bit
stream, respectively, to reduce the frequency of
memory access operations. The proposed CABAC
decoder can decode 1.5 bins per cycle and has already
achieved a real-time video decoding application for
the H.264/AVC main profile at level 4.2.

References
Chang, K.H., Lin, Y.L., 2009. A Very High Throughput Fully

Hardwired CABAC Decoder. Int. Symp. on Intelligent
Signal Processing and Communication Systems, p.200-
203. [doi:10.1109/ISPACS.2009.5383868]

Chen, J.W., Lin, Y.L., 2007. A High-Performance Hardwired
CABAC Decoder. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, p.37-40. [doi:10.1109/ICASSP.
2007.366166]

ITU-T Recommendation H.264:2003. Advanced Video Cod-
ing for Generic Audiovisual Services. Telecommunica-
tion Standardization Sector of International Telecommu-
nication Union.

Kuo, M.Y., Li, Y., Lee, C.Y., 2011. An Area-Efficient
High-Accuracy Prediction-Based CABAC Decoder Ar-
chitecture for H.264/AVC. IEEE Int. Symp. on Circuit
and Systems, p.160-163. [doi:10.1109/ISCAS.2011.5937
974]

Li, C.S., Huang, K., Yan, X.L., Feng, J., Ma, D., Ge, H.T.,
2010. A High Efficient Memory Architecture for H.264/
AVC Motion Compensation. IEEE Int. Conf. on
Application-Specific Architecture and Processors, p.239-
245. [doi:10.1109/ASAP.2010.5540963]

Li, C.S., Huang, K., Xiu, S.W., Ma, D., Ge, H.T., Yan, X.L.,
2011. High efficient pipeline design and implementation
for sub-pixel interpolation process in H.264/AVC. J.
Zhejiang Univ. (Eng. Sci.), 45(7):1187-1193 (in Chinese).
[doi:10.3785/j.issn.1008-973X.2011.07.008]

Liao, Y.H., Li, G.L., Chang, T.S., 2012. A highly efficient
VLSI architecture for H.264/AVC level 5.1 CABAC
decoder. IEEE Trans. Circ. Syst. Video Technol., 22(2):
272-281. [doi:10.1109/TCSVT.2011.2160752]

Ma, D., Huang, K., Chen, H.F., Yu, M., Yan, X.L., 2011.
Mixed increasing filter pipeline design for H.264/AVC
deblocking filter. J. Zhejiang Univ. (Eng. Sci.), 45(7):
1206-1214 (in Chinese). [doi:10.3785/j.issn.1008-973X.
2011.07.011]

Shi, B., Zheng, W., Lee, H.S., Li, D.X., Zhang, M., 2008.
Pipelined Architecture Design of H.264/AVC CABAC
Real-Time Decoding. 4th IEEE Int. Conf. on Circuits and
Systems for Communications, p.492-496. [doi:10.1109/
ICCSC.2008.110]

Xu, K., Choy, C.S., Chan, C.F., Pun, K.P., 2006. Power-
Efficient VLSI Implementation of Bit Stream Parsing in
H.264/AVC Decoder. IEEE Int. Symp. on Circuit and
Systems, p.984-988. [doi:10.1109/ISCAS.2006.1693839]

Yang, Y.C., Guo, J.I., 2009. High-throughput H.264/AVC
high-profile CABAC decoder for HDTV applications.
IEEE Trans. Circ. Syst. Video Technol., 19(9):1395-1399.
[doi:10.1109/TCSVT.2009.2020340]

Yang, Y.C., Lin, C.C., Chang, H.C., Su, C.L., Guo, J.I., 2006.
A High Throughput VLSI Architecture Design for H.264
Context-Based Adaptive Binary Arithmetic Decoding
with Look Ahead Parsing. IEEE Int. Conf. on Multimedia
and Expo, p.357-360. [doi:10.1109/ICME.2006.262510]

Yu, W., He, Y., 2005. A high performance CABAC decoding
architecture. IEEE Trans. Consum. Electron., 51(4):
1352-1359. [doi:10.1109/TCE.2005.1561867]

Yuan, T.C., 2008. A Novel Pipeline Architecture for
H.264/AVC CABAC Decoder. IEEE Asia Pacific Conf.
on Circuit and Systems, p.208-311. [doi:10.1109/
APCCAS.2008.4746021]

