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Abstract: Various solutions have been proposed to enable mobile users to access location-based services while
preserving their location privacy. Some of these solutions are based on a centralized architecture with the participation
of a trustworthy third party, whereas some other approaches are based on a mobile peer-to-peer (P2P) architecture.
The former approaches suffer from the scalability problem when networks grow large, while the latter have to
endure either low anonymization success rates or high communication overheads. To address these issues, this paper
deals with an enhanced dual-active spatial cloaking algorithm (EDA) for preserving location privacy in mobile P2P
networks. The proposed EDA allows mobile users to collect and actively disseminate their location information
to other users. Moreover, to deal with the challenging characteristics of mobile P2P networks, e.g., constrained
network resources and user mobility, EDA enables users (1) to perform a negotiation process to minimize the number
of duplicate locations to be shared so as to significantly reduce the communication overhead among users, (2) to
predict user locations based on the latest available information so as to eliminate the inaccuracy problem introduced
by using some out-of-date locations, and (3) to use a latest-record-highest-priority (LRHP) strategy to reduce the
probability of broadcasting fewer useful locations. Extensive simulations are conducted for a range of P2P network
scenarios to evaluate the performance of EDA in comparison with the existing solutions. Experimental results
demonstrate that the proposed EDA can improve the performance in terms of anonymity and service time with
minimized communication overhead.

Key words: Location-based service, Privacy preservation, Spatial cloaking, Mobile peer-to-peer networks
doi:10.1631/jzus.C1200267 Document code: A CLC number: TP393

1 Introduction

Location-based service (LBS) provides mobile
users with various tailored and personalized services
based on their location information. Due to the
explosive deployment of smart mobile phones and
the rapid growth of location determination technol-
ogy (LDT), such as Cell-ID, A-GPS, EOTD (Ti-
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wari et al., 2011), mobile users benefit a lot from
LBS in terms of traffic navigation, advertising rec-
ommendation, emergency service, social community,
and entertainment (IETF, 2011). It is highlighted
that almost three quarters (74%) of the smart phone
users obtain real-time location-based information
from LBS as of February 2012 (Kathryn, 2012). The
examples of LBS include range query (Kalnis et al.,
2007), e.g., “show me a list of restaurants within 2
km distance from my current location”, and nearest
neighbor query (Xiong et al., 2005), e.g., “where is
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the nearest hospital?”.
To access the services from an LBS provider

(LSP), a user needs to reveal his private location in-
formation to the LSP, which may disclose both where
he is/was and what he is/was doing. For instance, a
location record can prove the fact that a user was in
a certain hospital during a certain time, which will
attract great interest of an insurance agent who will
promote medical insurance to that user. Therefore,
a user is often unwilling to disclose such information
to any untrustworthy LBS servers due to the fact
that a malicious adversary may obtain more about
the user’s private information, e.g., home address
and user identity. As a matter of fact, it can even
increase the criminal risk, e.g., kidnapping and do-
mestic violence, in case where the criminals can gain
access to the user’s location information.

So far, many solutions have been proposed for
preserving the users’ location privacy (Gruteser and
Grunwald, 2003; Gedik and Liu, 2005; Chow et al.,
2006; 2011; Liao et al., 2006; Ghinita et al., 2007a;
Shokri et al., 2011; Che et al., 2012b). The most
widely adopted technique is to deploy a trustworthy
third party (centralized/decentralized) as a location
anonymizing server (LAS) between users and LSPs.
The LAS gathers sufficient location information and
blurs them into a cloaked region that meets users’
privacy requirements, such as k-anonymity (i.e., a
user cannot be identified from the other k − 1 users
(Sweeney, 2002)), or the minimum cloaked region
area Amin (i.e., a user needs to hide inside a region
of minimum size Amin).

However, in a mobile P2P network without an
established communicating infrastructure, the de-
ployment of solutions based on a trustworthy third
party becomes inappropriate or even impractical.
Thus, novel solutions without the participation of
a third party have been proposed. The available so-
lutions enable mobile users to cooperate with each
other via P2P communication so as to blur their ex-
act locations into a spatial cloaked region. Two im-
plementation modes for the aforementioned solutions
were proposed by Chow et al. (2006), i.e., on-demand
and proactive modes. These two modes deploy differ-
ent strategies in searching for anonymous candidate
peers with long and unpredictable time of delay as
well as low anonymization success rate in case users’
privacy requirements are strict, e.g., requiring a very
large k. Moreover, Chow et al. (2011) enhanced

the existing algorithms to address the network parti-
tion problem and the ‘center-of-cloaked-area’ privacy
attack.

Given this situation, in this work, we propose
a dual-active algorithm (DA) as the basic approach.
The major difference of DA as compared with other
existing algorithms is that DA allows users to ac-
tively share their locations with each other. More-
over, our main idea is presented through an enhanced
dual-active algorithm (EDA). It is built based on
DA, yet it significantly reduces the communica-
tion overhead and evidently improves the quality of
anonymization. Compared with existing algorithms,
both DA and EDA increase the anonymizing speed
and the anonymization success rate.

The key contributions made in this work are a
set of methods that address two critical challenging
problems in achieving location privacy in mobile P2P
networks. First, our EDA addresses the commu-
nication overhead problem through two novel mes-
sage transmission strategies, namely latest-record-
highest-priority (LRHP) broadcasting and context
negotiation. Second, EDA addresses the quality of
location-based service problem (measured as the ac-
curacy and latency of the responses) through the
LRHP strategy and also user-driven location predic-
tion. The technical overview of these methods is
summarized as follows:

1. EDA adopts the LRHP strategy for broad-
casting location records, which can lower the prob-
ability of disseminating some out-of-date location
records. As a result, it can upgrade the quality of
location records and also reduce the overall size of
messages to be transmitted.

2. EDA allows mobile users to share locations
with each other based on a prior negotiation result.
This prevents duplicate or worthless location mes-
sages from being transmitted among users, and sig-
nificantly reduces P2P communication overhead.

3. EDA allows a user to predict other users’
locations based on their latest available locations in-
formation, i.e., other users’ exact positions, moving
speeds, and directions. Therefore, it can be used to
solve the inaccuracy problem introduced by utilizing
users’ historical locations directly.

Our previous work (Che et al., 2012b) briefly
introduced the DA algorithm. In this paper, we not
only describe the DA algorithm in detail but also
propose EDA as an improved solution in terms of
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less communication overhead. We evaluate the pro-
posed DA and EDA with other existing algorithmic
solutions through extensive simulation for a range
of P2P network scenarios. The experimental results
demonstrate the improvement of EDA in terms of
communication overhead over DA for all the simu-
lated scenarios.

2 Related work

The techniques proposed to preserve user loca-
tion privacy can be categorized into two main classes,
namely the pseudonyms and dummy location tech-
nique and the spatial cloaking technique, as reviewed
in the following.

As a representative of the pseudonyms and
dummy location technique, Landmark (Hong and
Landay, 2004) allows a user to use the location of a
certain landmark rather than sending his exact loca-
tion to an LSP. Some other solutions enable a user to
generate a set of fake locations and send it to an LSP
so that the LSP cannot distinguish the user’s exact
location from these dummies, thus achieving the k-
anonymity protection for the user (Yiu et al., 2008;
Shankar et al., 2009; Wei et al., 2012). Neverthe-
less, it consumes more network resources to transmit
these dummy locations, and costs additional com-
puting resources of the LSP for dealing with these
fake locations.

For the spatial cloaking technique, the dedicated
research efforts can be divided into three main di-
rections (Chow and Mokbel, 2009), namely trusted
third-party architecture, mobile P2P architecture,
and hybrid architecture. For the first architecture,
some solutions introduce a trustworthy third party
serving as a middleman between a user and an LSP
(Chow et al., 2006; 2011; Ghinita et al., 2007a; 2007b;
Shokri et al., 2011; Che et al., 2012b). The third
party collects users’ real location information and
blurs a cloaked region for each user based on these
real locations and then communicates with those
LSPs instead of the users. Since the third party
has the full knowledge of users’ location information
as well as their requests, all the historical locations
and users’ interest could be revealed in case the third
party is compromised by an adversary. Moreover, as
the third party is the communication bottleneck, a
denial-of-service (DoS) attack will frustrate the us-
ability of the entire system.

Unlike the first centralized architecture, the mo-
bile P2P architecture does not involve any third
parties to anonymize users’ location-related queries
(Chow et al., 2006; 2011; Ghinita et al., 2007a;
2007b; Shokri et al., 2011; Che et al., 2012b). Chow
et al. proposed two modes of spatial cloaking al-
gorithms (Chow et al., 2006) and three enhanced
schemes (Chow et al., 2011) in which users help each
other generate the cloaked region. The on-demand
mode executes only the candidates searching step
whenever a user begins to send a query, whereas
the proactive mode periodically executes that step.
The information sharing scheme enables users to
share their gathered location information, the histor-
ical location scheme addresses the network partition
problem, and the cloaked area adjustment scheme
prevents the ‘center-of-cloaked-area’ privacy attack.
Our previous work (Che et al., 2012b) introduced
a dual-active mode, which reduces the anonymizing
time and increases the anonymization success rate.
Ghinita et al. (2007a; 2007b) proposed solutions to
index users into a hierarchical network and built the
spatial cloaked region based on the Hilbert space-
filling curve. MobiCrowd (Shokri et al., 2011) allows
users to answer LBS queries of neighbor peers so
that a querying user can preserve his location pri-
vacy from the LSP. Che et al. (2012a) proposed a
semantics-aware location sharing framework based
on the cloaking zone which takes the influence of se-
mantic locations into consideration while generating
cloaked regions.

The hybrid architecture is a mixture of the for-
mer two. Zhang and Huang (2009) proposed a so-
lution which allows users to either request cloaking
service from a centralized trustworthy third party
serving as an LAS, or carry out the task in a P2P
manner which balances the workload among LAS
and mobile users. However, this architecture suffers
from the privacy protection flaws of the other two
architectures, making it easier for an adversary to
violate a user’s privacy.

3 System model

In this section, we first describe the attack mod-
els for anonymization algorithms, and then state the
research problem and describe the LBS system ar-
chitecture in a P2P environment before presenting
user privacy requirements.
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3.1 Attack models

This section summarizes the attack models for
anonymization algorithms which preserve mobile
users’ location privacy. In this study, we classify all
the attacks into two main categories, namely server-
side attacks and peer-side attacks.

For server-side attacks, we consider that some
entities on the server side, e.g., an LSP who provides
service based on user locations, or a third party who
participates in the location anonymization process,
cannot be trusted. This is because they can gather
a lot of mobile users’ precise location information in
the classic LBS systems. With these private data,
an LSP or a third party may use them for user-
unexpected commercial purposes, e.g., personalized
recommendations. Moreover, an adversary who can
obtain these private data may utilize them in disclos-
ing users’ more sensitive information with malicious
purposes, e.g., tracing users’ trajectories, finding out
users’ habits and interest.

For peer-side attacks, we also assume that it
is not wise for users to directly share their location
information with other peers because some mobile
peers cannot be fully trusted only based on their
identities. In some cases, some malicious peers can
secretly collect users’ location information or can
even actively initiate a DoS attack by sending a huge
amount of dummy locations to a victim so as to block
the victim’s communication channel.

In this study, we define the trust model by as-
suming that the LSP and third parties are not trust-
worthy while the mobile peers who participate in the
anonymization process can be trusted. Thus, our
proposed algorithms aim to defend server-side at-
tacks. The solutions against peer-side attacks, how-
ever, are left for further investigation in future work.

3.2 Research problem

The research problem of this study is to provide
an effective and efficient solution to preserve user
location privacy from being disclosed to the LSPs
which should also weigh users’ location privacy pro-
tection against the quality of LBS services.

3.3 System architecture

As shown in Fig. 1, the system contains two im-
portant components, mobile users and LSPs. The
mobile users are carrying mobile devices with posi-
tioning functionality which can provide location in-

formation. They can (1) access LBS on the Internet
through base stations or Wi-Fi access points and (2)
communicate with other mobile users via wireless
local area network (LAN) or ad hoc network rout-
ing protocols (Papadopouli and Schulzrinne, 2001),
which enable outdoor users to communicate within
a range of approximately 250 m. From time to time,
these users need to access some location-based ser-
vices and send their queries together with their loca-
tion information, which can be their exact positions
or a blurred cloaked region (CR) generated based on
users’ personalized privacy requirements.

Fig. 1 The system architecture

On the other hand, an LSP is responsible for re-
ceiving queries from users and sending back answers
to them. Once a user provides his exact location
information to an LSP, some sensitive information
may be disclosed by the LSP or an adversary who
has compromised the LSP. For instance, the user’s
privacy (e.g., habits and interest) can be disclosed
by analyzing his historical moving trajectory or can
be violated by trading the valuable information to
some malicious third parties. To preserve privacy,
users often use CRs instead of their exact locations
to achieve k-anonymity protection; i.e., one cannot
distinguish a user from other k − 1 users who are
also located inside that region. On the other hand,
to deal with queries based on blurred locations, an
LSP can be equipped with a privacy-aware query
processor (Chow et al., 2009). Then the processor
generates a group of candidate answers based on a
region and sends the answers back to the user. The
size of the candidate answer set depends mainly on
the user’s privacy requirements, as discussed in the
following.

3.4 Privacy requirements

The user privacy requirements for accessing LBS
can be classified into two categories:

1. Anonymous requirements. To support this
type of requirements, two parameters, k-anonymity
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and minimal size Amin, can be used. Parameter k

indicates that a CR should cover at least k anony-
mous users so that a user can achieve k-anonymity
protection (i.e., without being known from other
k − 1 users). Generally, a larger k can achieve bet-
ter protection. Parameter Amin indicates the min-
imal acceptable size of the CR. Sometimes when
the population is dense, Amin is more effective than
k-anonymity. This is because achieving a strict k-
anonymity protection is very easy in that situation.

2. Quality of service (QoS) requirements. It is
also very important that users can enjoy LBS with
better quality, e.g., accurate candidate answer sets
and short latency towards receiving a service. There-
fore, we deploy two parameters, t-latency and Amax,
to define the QoS requirements. Parameter t-latency
is the longest tolerable time for generating a CR,
and Amax limits the maximal acceptable size of the
CR. Generally speaking, a very strict k-anonymity
requirement may result in both a long time delay
for gathering sufficient locations, which may exceed
users’ patience, and a larger size of CR to cover the
anonymity, which indicates fewer accurate candidate
answers and more communication to transmit these
answers.

In summary, one cannot achieve good quality of
anonymity and QoS at the same time. So, a trade-
off between them needs to be investigated by tailored
privacy preservation algorithms.

4 Spatial cloaking algorithm

This section presents our spatial cloaking algo-
rithms for location privacy preservation in mobile
P2P networks. First, we give an overview of the gen-
eral algorithm. We then describe our basic idea in
achieving privacy, namely the DA algorithm. Next,
the algorithm is further enhanced in three detailed
strategies, known as EDA, to address the overhead
problem and the inaccuracy problem. Table 1 lists
the notations to be used henceforth.

4.1 Algorithm overview

A spatial cloaking algorithm enables mobile
users to cooperate with each other in sharing loca-
tions so as to generate a cloaked region that satis-
fies their anonymity and QoS requirements. In gen-
eral, the spatial cloaking algorithm can be carried
out through three steps as follows:

Table 1 Notations and descriptions

Notation Description

k Number of anonymous users for
k-anonymity requirement

CR A cloaked region
Amin Minimal acceptable size of a CR
Amax Maximal acceptable size of a CR

t-latency Longest tolerable time for generating
a CR

uid Unique ID of a mobile user
hop Routing distance between two hosts
α Angle of a user’s moving direction

initialTime Generating time of the record
Pb(r) Probability of broadcasting a record r

p User-specified broadcasting probability
DNL Direct neighbor list
CL Candidate list
NL Negotiation list
AL Accept list related to an NL

MaxAcceptHop Largest hop one can accept
MaxValidTime Longest valid time for a record

RN Ratio between the numbers of records
sent by EDA and DA

RC Ratio between the communication
overheads caused by EDA and DA

1. Candidates searching step. During this step,
a mobile user gathers a list of mobile peers’ location
information, namely the candidate list (CL).

2. Cloaking step. Based on the gathered loca-
tions in the CL, the user then generates a CR ac-
cording to his privacy profile, e.g., k-anonymity and
Amax.

3. Query processing step. In this step, the user
sends a query with the CR instead of his exact lo-
cation to an LSP for certain LBS. After receiving a
set of candidate answers from the LSP, the user then
picks out the desired ones.

Fig. 2 shows an example of algorithm execution
in which all the mobile users, denoted by circles, are
located in some grids of the map. Suppose that Alice,
shown by the black circle in the middle of the map,
wants to access a certain LBS. First, in the can-
didates searching step, she needs to gather enough
candidate locations to fulfill her privacy requirement,
e.g., k-anonymity, where k equals 5. Hence, she be-
gins by broadcasting a request to her direct neigh-
bors m1, m2, and m3 (Fig. 2), asking for their lo-
cations. Then, these neighbors reply to her with
their exact locations. However, since k equals 5, the
locations of three direct neighbors are insufficient.
Therefore, she keeps sending requests to multi-hop
users through the help of her direct neighbors who



Che et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):356-373 361

Hop 1

Hop 1

Hop 1

Hop 2 Hop 1

Hop 1

Hop 2

Fig. 2 An execution demo of the spatial cloaking
algorithm (k=5)

will re-broadcast her request to other users. Second,
when Alice has gathered enough candidates, she exe-
cutes the cloaking step, which will blur the locations
of these candidates into a CR by using diverse tech-
niques. For the last step, one mobile user, e.g., m3,
is randomly selected as a representative who will for-
ward the query and CR instead of Alice to the target
LSP. Equipped with a privacy-aware query proces-
sor, the LSP is able to reply to m3 with a set of
candidate answers, which will then be forwarded to
Alice. Finally, Alice picks out the desired answers
from the answer set according to her exact location.

The candidates searching step can be executed
in either on-demand or proactive mode (Chow et al.,
2006). For on-demand mode, the search for candi-
dates starts only at the query of a user. In contrast,
in proactive mode candidates are searched for period-
ically and the CL is maintained for the user no matter
whether the user sends a query or not. However, both
modes suffer from unpredictable long delay in find-
ing sufficient k-anonymity and low anonymization
success rate, particularly when users have stringent
privacy requirements. Hence, in our work, a dual-
active mode has been proposed to overcome these
shortcomings.

4.2 Dual-active mode

In this section,we introduce a novel strategy DA
for the mobile candidates searching step. Instead
of passively asking for the location information of
other peers, a mobile user not only actively sends his
location to others, but also actively broadcasts his
gathered candidate locations.
Definition 1 (Location record) The candidate
peer location record, denoted as R�, is defined as a
5-tuple record as follows:

R� = (uid, x, y, hop, initialTime),

where uid is the mobile user’s unique ID, (x, y) rep-
resents the coordinates of the user’s exact location,
hop implies the routing distance between the record
owner and receivers, and initialTime shows the gen-
erating time of this record.

Whenever a record is generated, 1 is assigned to
its hop. This value is increased by 1 whenever it is
broadcasted to the next-hop users. The parameter
initialTime means the time when a record is gene-
rated by its owner. Users can define MaxAcceptHop
to control whether to accept a received record; e.g., a
user refuses a record if its hop value exceeds the pre-
defined MaxAcceptHop. A user also defines Max-
ValidTime in his privacy profile to manage the valid
period of each location record. For example, if the
mean time between initialTime and current system
time exceeds the MaxValidTime constraint, the
record is expired and should be removed by its
owner. Algorithm 1 presents the DA algorithm in
pseudo code.

Algorithm 1 Dual-active spatial cloaking algorithm
Input: mobile user U , privacy requirements k, Amin,

Amax

Phase I: broadcasting phase
1: for each user ud in U ’s DNL do
2: generate U ’s own location record r;
3: send r to ud;
4: for each location record r′ in U ’s CL do
5: increase hop of r′ by 1 and send r′ to ud;
6: end for
7: end for

Phase II: receiving phase
8: for each record r received do
9: if r.hop ≥ MaxAcceptHop then

10: ignore r;
11: else if r̂ exists in CL and r̂.uid == r.uid then
12: check and update r̂;
13: else
14: ignore r;
15: end if
16: end for
Phase III: updating phase
17: for each location record r in CL do
18: if r is expired then
19: ignore r;
20: end if
21: end for

For the DA algorithm, the candidates searching
step is carried out by the following three phases:
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1. Broadcasting phase. The mobile devices au-
tomatically execute this phase in the background pe-
riodically, e.g., 10 s per round. As a mobile device
remains online, it can discover a list of direct neigh-
bors (DNL) that are within the one-hop transmission
range using the P2P communication technique. The
user first sends his location record to his direct neigh-
bors. In this location record, uid is the unique iden-
tifier of the user, (x, y) represents the user’s current
location coordinates, hop is 1, and the initialTime is
assigned with the current system time. After that,
the user also sends all the records in his CL to his
direct neighbors. Note that the hop value of each
record to be sent should be increased by 1, which
indicates that a record is broadcasted to the next
hop.

2. Receiving phase. At the same time, each
mobile user receives location records from his direct
neighbors. Since these records are shared among
users, it is possible that some users may hold the
same copy of one record at the same time. There-
fore, a user may receive many duplicate records from
different neighbors or even the record that represents
the user himself. We allow a user to accept, reject,
or update these records based on their hop and ini-
tialTime values. For instance, a record with hop=10
will be ignored by a user who specifies his profile pa-
rameter MaxAcceptHop to be 8. Moreover, if a user
receives a record in which the uid has already existed
in his CL, he needs to compare the initialTime values
of these two records and then keep the latest one.

3. Updating phase. The updating phase is ex-
ecuted periodically in the background in order to
discard stale location records because they will af-
fect the anonymous quality of the CR. For each
record, we calculate the mean time between current
system time and its initialTime. If the mean time
exceeds the user-defined MaxValidTime constraint,
we should drop that expired record.

The candidates searching process will not stop
until the size of CL satisfies the k-anonymity require-
ment, which means that sufficient locations have
been collected for CR generation. However, if the
CR does not satisfy the size requirements (i.e., Amin

and Amax), it will roll back to the former step to re-
generate the CR. For example, if a user has collected
k locations but these locations are too close to him,
the size of the generated CR will be too small to meet
the Amin constraint. In this case, the user should go

back to the former step to collect more locations for
re-generating the CR. At the same time, the total
executing time of the algorithm, namely Running-
Time, should not exceed the longest tolerable time,
namely t-latency, for QoS consideration. Otherwise,
it will be marked as an unsuccessful anonymization
process.

4.3 Enhanced dual-active mode

From the above execution process, we can ob-
serve that the DA algorithm may exhaust the com-
munication bandwidth by arbitrarily sharing loca-
tion information among mobile users. Also, it has to
endure the inaccuracy problem introduced by utiliz-
ing historical locations. As elaborated in the follow-
ing, the EDA algorithm introduces three strategies
to address these problems, namely (1) the LRHP
strategy for message broadcasting, (2) message ne-
gotiation before location sharing, and (3) location
prediction.

4.3.1 LRHP strategy

The LRHP strategy will reduce the probability
of broadcasting some low-quality location records.
As noticed, it is possible that one record can be
spread to a certain user far away from that loca-
tion through multi-hop P2P broadcasting. However,
the further the distance one record is forwarded to,
the less its quality will be. This is because a CR,
with maximal area limitation Amax, cannot expand
unboundedly in order to cover a distant position. So,
the EDA algorithm deploys the LRHP strategy in the
broadcasting phase, which evaluates the quality of a
record by its hop value. A record with a smaller hop
indicates that the location of the record is closer to
the user, which also implies that it takes less time for
the record to be forwarded to the user (which needs
less multi-hop P2P communication). Therefore, a
location record with hop=2 should have a higher
probability of being broadcasted than a record with
hop=6. Hence, we define the broadcasting probabil-
ity as follows:
Definition 2 (Broadcasting probability) Given
an EDA location record Reda received by a user,
the probability for the user to broadcast this record,
denoted as Pb(Reda), can be calculated by

Pb(Reda) = phop, (1)

where p (0 ≤ p ≤ 1) is a user-specified parameter
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and hop is equal to the hop value of Reda.
From the definition, we can see that if a user sets

p = 0, then the user will not broadcast any records
to his neighbors, whereas if the user sets p = 1, the
user will forward every record he maintained to his
neighbors. This is the same as in the DA algorithm.

4.3.2 Negotiation process

The negotiation process aims at preventing
users from sending duplicate records to each other.
In the situation, after sharing locations with each
other for a period of time, a group of nearby mobile
users may have a very similar CL. Therefore, continu-
ously sending some duplicate locations to each other
will be of little help but only increase the communi-
cation overhead among them. So, we allow mobile
users to perform a negotiation process during which
users first select a group of uids following the LRHP
strategy, and then put them into a list known as
the negotiation list (NL). Next, they send the NL to
their neighbors and receive a corresponding accept
list (AL) in which those duplicate records’ uids are
dropped by their neighbors. Finally, by using a list
of uids in the AL, both the sender and receiver have
made decision on which records to send or to receive.
We refer to the ratio of the AL size to the NL size as
the acceptance ratio, as defined below:
Definition 3 (Acceptance ratio) Given a user’s
NL and its corresponding AL sent back from one of
his neighbors, we define the acceptance ratio of these
records accepted to be sent, denoted as q, as

q =
S(AL)
S(NL)

,

where S(AL) and S(NL) denote the sizes of the two
lists, respectively. Given that a user has m direct
neighbors, we can also define the average acceptance
ratio, denoted as q̄, as

q̄ =

∑m
i=1 qi
m

.

In other words, during the negotiation process,
there are only q portion of records maintained in an
NL which need to be transmitted to neighbors. We
have 0 ≤ q ≤ 1 since the size of AL is no more
than that of NL. In practice, the value of q may be
less than 0.1 (observed in the experiments), indicat-
ing that a great number of reduplicative records are
stopped from being sent.

The total amount of communication overhead
between two users for the EDA algorithm, measured
by the total length of messages to be transmitted,
consists of three parts, namely (1) the length of
the location records to be sent, (2) the length of
NL, and (3) the length of AL. Compared with DA,
EDA sends/receives only some negotiation messages
in the negotiation process, instead of directly send-
ing a group of location records. Since the negotiation
messages only consist of uids of the records, the sum
of the lengths of NL and AL is much smaller than
the total length of these duplicate records. There-
fore, EDA can decrease the overhead and save users’
P2P communication bandwidth. Let L(Reda) and
L(Rda) be the total lengths of records to be sent by
EDA and DA respectively, and L(NL) and L(AL)
be the total lengths of NL and AL of EDA respec-
tively. The following theorem will analyze the overall
overhead decrease for the EDA algorithm:
Theorem 1 Let the length of a location record be
�r bytes, and the length of a corresponding nego-
tiation message be �n bytes. Let RN be the ratio
between the total numbers of location records sent
by the two algorithms, i.e., RN =

L(Reda)

L(Rda)
. Let RC

be the ratio between the communication overheads
of the two algorithms, i.e., RC =

Overheadeda

Overheadda
. We

have the upper bound of RC as follows:

RC ≤ RN +
�n
�r
(1 + q̄), (2)

where q̄ is the average acceptance ratio.

Proof First, we can deduce that �r > �n because
the negotiation message contains only the uid part
of a record. Second, from the definition of RC, we
have

RC =
Overheadeda

Overheadda
=

L(Reda) + L(NL) + L(AL)
L(Rda)

.

Given that a user has n location records and m direct
neighbors, we know that DA sends mn records and
EDA sends mn·RN records. Then we have L(Rda) =

�rmn and L(Reda) = �rmn ·RN. For EDA, the worst
case for the NL is that the uids of all n records are
put into the NL (the same influence as setting p = 1).
Thus, we have L(NL) ≤ �nmn and L(AL) ≤ �nmnq̄,
where q̄ is the average ratio of the AL size to the NL



364 Che et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):356-373

size. Finally, we have

RC =
L(Reda) + L(NL) + L(AL)

L(Rda)

≤ �rmn · RN + �nmn+ �nmnq̄

�rmn

=
�r · RN + �n(1 + q̄)

�r

= RN +
�n
�r
(1 + q̄).

As a result, we can use RC to quantitatively
evaluate the performance of the EDA algorithm in
terms of communication overhead against the DA
algorithm. To calculate the value of RC, we should
first estimate the value of RN. By definition, we have

RN =
L(Reda)

L(Rda)
=

Neda

Nda
where Neda and Nda denote

the numbers of location records sent in one broad-
casting process of EDA and DA, respectively. Owing
to the LRHP strategy, the records with small hop
are more likely to be sent. Therefore, RN is closely
related to the percentage of records with different
hops in the CL. In what follows, we investigate three
types of classic distributions for the records with dif-
ferent hop values, i.e., uniform distribution, expo-
nential distribution, and Poisson distribution. We
also show the examples of RN values under different
distributions.
Theorem 2 Supposing that the number of records
in CL with different hop values follows uniform dis-
tribution, then RNu (subscript ‘u’ means uniform
distribution) can be calculated as

RNu =

⎧
⎪⎨

⎪⎩

(1− pH)pq̄

(1− p)H
, 0 ≤ p < 1,

q̄, p = 1,

(3)

where p is the broadcasting probability, H is the
MaxAcceptHop value, and q̄ is the average accep-
tance ratio.
Proof Given a user who has n location records
stored in his CL and that the numbers of records
with different hop values are equal, we can calculate
the total number of records to be shared by EDA
(before the negotiation process) as

n

H
p1 +

n

H
p2 + · · ·+ n

H
pH =

H∑

h=1

n

H
ph.

If p = 1, the value equals n, which is exactly the same
as in DA. In the negotiation process, given that a user

has m direct neighbors with corresponding values of
q, we have

Neda =
H∑

h=1

n

H
ph ·

m∑

i=1

qi, p �= 1,

and Nda = nm. Thus, RNu can be calculated as

RNu =

∑H
h=1

n

H
ph ·∑m

i=1 qi

nm

=

∑H
h=1 p

h ·∑m
i=1 qi

Hm

=
(1− pH)pmq̄

(1 − p)Hm

=
(1− pH)pq̄

(1 − p)H
.

If p = 1, we have

RNu =
n
∑m

i=1 qi
nm

=
mq̄

m
= q̄.

For example, if we have p = 0.8, H = 10, and
q̄ = 8% then we have RNu = 2.85%. It indicates that
EDA sends only 2.85% of the records as required in
DA. If we let �r = 64 bytes and �n = 4 bytes, by The-
orem 1 we have the upper bound of RC, 9.6%. This
means that EDA costs only 9.6% of the communica-
tion overhead required by DA, showing a significant
decrease as expected.
Theorem 3 Supposing that the number of records
in CL with different hop values follows exponential
distribution, then RNe (subscript ‘e’ means exponen-
tial distribution) can be calculated as

RNe =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λq̄p
1− (e−λp)H

eλ − p
, 0 ≤ p < 1, eλ �= p,

λq̄H, 0 ≤ p < 1, eλ = p,

q̄, p = 1,
(4)

where p is the broadcasting probability, H stands
for the MaxAcceptHop value, q̄ is the average ac-
ceptance ratio, and λ is the rate parameter of the
distribution.
Proof Given exponential distribution, we can cal-
culate the number of records at certain hop = h as
nλe−λh. If 0 ≤ p < 1, then the total number of
records to be shared by EDA (before the negotiation
process) can be calculated as

nλe−λp+nλe−2λp2+· · ·+nλe−HλpH = nλ

H∑

h=1

(e−λp)h.
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Given that a user has m direct neighbors, then we
have

Neda = nλ

H∑

h=1

(e−λp)h ·
m∑

i=1

qi, p �= 1,

and Nda = nm. Thus, RNe can be calculated as

RNe =
nλ

∑H
h=1(e

−λp)h ·∑m
i=1 qi

nm

= λq̄

H∑

h=1

(e−λp)h

=

⎧
⎪⎨

⎪⎩

λq̄p
1− (e−λp)H

eλ − p
, eλ �= p,

λq̄H, eλ = p.

When p = 1, we have Neda = nmq̄. Then,

RNe =
nmq̄

nm
= q̄.

For example, if we let p = 0.8, H = 10, q̄ = 8%,
and λ = 0.31 for exponential distribution (we ob-
serve that the mean value of the distribution is ap-
proximately equal to 3.2 in the experiments), then we
have RNe = 3.51%. We notice that RNe is slightly
greater than RNu (which is 2.85%) in this case. This
is because the number of records with small hop val-
ues under exponential distribution is greater than
that under uniform distribution, leading to a slightly
larger number of records to be shared. If we let
�r = 64 bytes and �n = 4 bytes, then by Theorem 1
we know that the upper bound of RC is 10.26%.
Theorem 4 Supposing that the number of records
in CL with different hop values follows Poisson dis-
tribution, then RNp (subscript ‘p’ means Poisson
distribution) can be calculated as

RNp =

⎧
⎪⎪⎨

⎪⎪⎩

e−λq̄

H∑

h=1

(λp)h

h!
, 0 ≤ p < 1,

q̄, p = 1,

(5)

where p is the broadcasting probability, H stands
for the MaxAcceptHop value, q̄ is the average ac-
ceptance ratio, and λ is the rate parameter of the
distribution.
Proof Given that a user has n location records
stored in his CL and that the number of records fol-
lows Poisson distribution, we can calculate the num-

ber of records at certain hop = h as n
λhe−λ

h!
. If

0 ≤ p < 1, then the total number of records to be
shared by EDA (before the negotiation process) can
be calculated as

nλe−λ

1!
p1 +

nλ2e−λ

2!
p2 + · · ·+ nλHe−λ

H !
pH

=

H∑

h=1

ne−λλhph

h!
= ne−λ

H∑

h=1

(λp)h

h!
.

Given that a user has m direct neighbors, we have

Neda = ne−λ
H∑

h=1

(λp)h

h!
·

m∑

i=1

qi, p �= 1,

and Nda = nm. Thus, RNp can be calculated as

RNp =
ne−λ

∑H
h=1

(λp)h

h!
mq̄

nm

= e−λq̄

H∑

h=1

(λp)h

h!
.

When p = 1, we have Neda = nmq̄. Then RNp is

RNp =
nmq̄

nm
= q̄.

For example, if we let p = 0.8, H = 10, q̄ = 8%,
and λ = 3.2 for Poisson distribution (observed in the
experiments), then we have RNp = 3.8%. Given that
�r = 64 bytes and �n = 4 bytes, we know that the
upper bound of RC is 10.55%. This is also a signi-
ficant improvement of EDA performance in terms
of less communication overhead. The experimental
results in Section 5.2 show that the number of records
follows Poisson distribution in our experiments.

4.3.3 Location prediction

The use of the historical location records can
bring some advantages, e.g., reducing communica-
tion overhead between peers and solving the network
partition problem (Chow et al., 2011). However, di-
rectly using these stale locations without consider-
ing user movement (Che et al., 2012b) will definitely
cause an inaccuracy problem when generating a CR.
For example, user Ua received a record from user Ub

who was very close to Ua in position about 10 s be-
fore. Supposing that Ub is leaving fast away from Ua,
the CR, which was generated with the old location
of Ub, may not contain enough anonymity due to the
fact that Ub is currently outside that CR.
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The purpose of location prediction is to solve
the inaccuracy problem caused by using these out-
of-date locations. Chow et al. (2011) proposed a
strategy which calculates a circular area as the peer’s
possible location at current time with a radius of
meantime × speed, where meantime indicates the
time between the location record generation and the
current time, and speed is the estimated maximum
possible speed of the peer. In this work, EDA en-
ables a user to predict other users’ current locations
in a different way. In this process, EDA updates
the coordinates (x, y) based on their moving speeds
and directions, which can be obtained from a po-
sitioning device like the Global Positioning System
(GPS). Hence, we define the EDA location record by
extending Definition 1 as follows:
Definition 4 (EDA location record) The EDA
location record, denoted as Reda, is defined as a 7-
tuple record:

Reda = (uid, x, y, hop, initialTime, speed, α), (6)

where the first five parameters are the same as stated
in Definition 1 and the last two parameters, speed
and α, represent the moving speed and direction of
the user, respectively.

Since we have obtained a peer’s speed and mov-
ing direction, we can predict his location coordi-
nates (x, y) at current time by the following formu-
las: x = x + speed · cosα and y = y + speed · sinα.
Compared with the former prediction method (Chow
et al., 2011), we notice that both location prediction
strategies have their respective pros and cons. The
former method is more conservative and safer, which
can guarantee the region to contain as many as k

anonymous users. It can achieve a more secure k-
anonymity protection at the expense of a relatively
large region area as well as the additional candidate
answers to transmit. On the other hand, our method
may cause a location predicting error by using the
stale movement condition which may vary with time.
However, the advantage is that, we can narrow down
a user’s position to a small range with a high prob-
ability that does not require the arbitrary expansion
of the size of the CR, hence resulting in a smaller can-
didate answer set and thus reducing the communica-
tion overhead. Moreover, we enable users to control
the side effect of inaccurate location prediction by
setting a proper value to the user-defined constraint
MaxValidTime. For example, if MaxValidTime is set

to be a small value, say 4 s, the location predicting
error may be a relatively small and negligible value
compared with the total size of the CR.

4.3.4 Algorithm specification

Algorithm 2 presents the EDA algorithm in
pseudo code. With the above three strategies, EDA
enhances the three phases from DA. The details of
the phases are described as follows.

Algorithm 2 Enhanced dual-active spatial cloaking
algorithm
Input: mobile user U , privacy requirements k, Amin,

Amax

Phase I: broadcasting phase
1: add U ’s own uid into the NL;
2: for each record r in U ’s CL do
3: have a probability phop to add r’s uid into NL;
4: end for
5: for each user ud in U ’s DNL do
6: send the NL to ud;
7: wait and receive the AL from ud;
8: for each uid in the AL do
9: prepare r according to uid;

10: send r to ud;
11: end for
12: end for
Phase II: receiving phase
13: wait and receive NL from a user ud;
14: for each uid in U ’s own NL do
15: if uid does not exist in CL then
16: add uid to AL;
17: end if
18: end for
19: send AL to user ud;
20: wait and receive a set of r’s from ud;
21: for each record r received do
22: if r.hop ≥ MaxAcceptHop then
23: ignore r;
24: else
25: add r to CL;
26: end if
27: end for
Phase III: updating phase
28: for each candidate record r in CL do
29: if r is expired then
30: remove r;
31: else
32: update r’s (x, y) based on speed and α values;
33: end if
34: end for
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1. Broadcasting phase. A mobile user does not
directly broadcast the records to neighbors but first
prepares an NL instead. The user adds his own uid
into the NL. Subsequently, for each record inside his
CL, the user calculates the probability to add the
record’s uid into the NL by Eq. (1) in Definition 2.
After preparing the NL, the user sends it to all his
direct neighbors. As the NL contains only a set of
uids, its largely reduced size makes it more prac-
ticable to be transmitted via P2P communication
as compared with the DA algorithm which directly
transmits these full-size records. When one neighbor
replies to the user with an AL which contains a set of
uids accepted for transmitting, the user then sends
corresponding records to the neighbor, according to
the record’s unique uid. Note that the hop value
of any record to be sent should be added by 1, in-
dicating that the record is broadcasted to a further
routing hop.

2. Receiving phase. This phase runs automati-
cally at the background. During this stage one user
listens to all his direct neighbors, each of whom may
send an NL. It then generates an AL based on the re-
ceived NL. For example, upon receiving an NL from
user Alice, user Bob now has a list of candidate uids
and then searches for each uid from his CL. If one uid
does not exist in the CL, which means that Bob does
not have the location record, he then adds it to the
AL. The final AL will be sent back to Alice. After
that, Alice sends to Bob a group of records according
to the AL. For each record Bob receives, if the hop
value satisfies the MaxAcceptHop constraint, he then
saves the record to his CL or ignores it otherwise.

3. Updating phase. In this phase, we first re-
move those out-of-date location records by checking
their existing time, which is similar to that in DA,
and update these valid locations based on their speed
and α parameters. The updated coordinates (x, y)

should be x = x+speed·cosα and y = y+speed·sinα,
respectively. Parameter α is the angle of the user’s
moving direction in a 2D coordinate system; e.g., if
the user is moving northward, then α should be 90◦.

4.4 Complexity analysis

Based on the detailed descriptions in Algorithms
1 and 2, the time complexity of either DA or EDA
can be divided into three parts according to the three
processing phases of the algorithms. Suppose that
the average number of neighbors in the DNL (list

of direct neighbors) is m for each user and that the
average number of records in the CL is n. In general,
we have m < n for most of the cases because m

is limited by the capable transmission range of one-
hop P2P communication. From Algorithm 1, we
know that: (1) in the broadcasting phase, it takes
O(mn) time for each user to send n records to each
of the m neighbors, (2) in the receiving phase, it
requires O(mn) time to receive n records from each
neighbor, and (3) in the updating phase, it needs
O(n) time to go through and update all the records
in CL. Therefore, the overall time complexity of DA
is O(mn).

For EDA, from Definition 3, we know the accep-
tance ratio q ≤ 1 because some duplicate records in
NL will be filtered out. From Algorithm 2, we know
that: (1) in the broadcasting phase, EDA first takes
O(n) time to traverse the CL to generate an NL, and
then it requires O(phqmn) time to send each one of
the m neighbors with phqn records, where p is the
broadcasting probability and h is the mean hop value
of the records, (2) in the receiving phase, EDA takes
O(phqmn) time to receive phqn records from each
neighbor, and (3) in the updating phase, it requires
O(n) time, which is the same as in DA. Therefore,
the overall time complexity of EDA is O(phqmn).
Since we have ph ≤ 1 and q ≤ 1, we can conclude
that the time complexity of EDA is no more than
that of DA.

4.5 Discussion

Both DA and EDA allow users to control the
algorithm executing process and performance goals
by setting a group of parameters in the personal pro-
files. They are k, MaxValidTime, MaxAcceptHop,
t-latency, Amin, and Amax.

As mentioned above, the MaxValidTime para-
meter controls the period of validity for each stale
location record and the MaxAcceptHop parameter
controls the furthest P2P communication among mo-
bile peers. The assignment for these user-specified
parameters, e.g., MaxAcceptHop and MaxValid-
Time, will logically result in different inferences on
the performance of EDA. If we assign a large value to
MaxValidTime, a location record can be used for a
long time. Although using the stale location records
will cause the inaccuracy problem of a CR, it pro-
motes the anonymization success rate, reduces the
anonymizing time, and solves the network partition
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problem. Similarly, if we set a large value to Max-
AcceptHop, users can gather more location records
from long hop-distance users, which can increase the
anonymization success rate. However, it costs more
network resource to transmit these records. More-
over, if users assign a small value to Amin, these
records may be useless for CR generation. A trade-
off needs to be made between convenience and the
quality of anonymization by assigning proper values
to these parameters.

Given the unique limitations of the mobile en-
vironment, our algorithms face several challenges
(Mokbel and Chow, 2006). One of these challenges is
the limited battery power of mobile devices, which is
believed to be closely related to the executing time
of an algorithm, which can be partially measured
by the anonymizing time, and the overall commu-
nication overhead. The comparison among differ-
ent algorithms in terms of these two aspects will
be made using a set of experiments in the next
section. On the other hand, the mobile users can
disconnect themselves from the network frequently
for saving energy or reducing network failure, which
may affect the functioning of our algorithms. How-
ever, in this study, we assume that the mobile users
do not suffer from this problem and we believe
this issue is worth further investigation in the future
work.

5 Performance evaluation

This section evaluates the proposed DA and
EDA algorithms in comparison with three existing,
closely related algorithms as benchmarks, i.e., on-
demand, proactive algorithms (Chow et al., 2006)
and IS-HL (which is the acronym for the combi-
nation of information sharing scheme and histori-
cal location scheme) algorithms (Chow et al., 2011).
We compare these algorithms with respect to four
key performance metrics. (1) Anonymization suc-
cess rate. This is the metric to measure whether an
algorithm satisfies a user’s k-anonymity requirement
by gathering the locations of enough users within a
given time. It is the ratio of the number of users who
successfully generate the cloaked region to the total
number of users. Its value should be within [0, 1] and
the greater the value, the better the performance.
(2) Average anonymizing time per query. It mea-
sures the response time of the anonymizing process

for each algorithm. It is defined as the average mean
time between a user initiating a query and finishing
generating a CR for the query. The shorter the time
it requires, the better the performance it achieves.
(3) Average communication overhead per query. It
measures the total length of all the messages caused
by a query’s anonymizing process. It consists of all
the messages sent and received by a user during a
period of simulation time. (4) Cloaked region size.
It measures the average size of the cloaked region
generated by the algorithms. This also indicates the
quality of the cloaked region since the larger the re-
gion, the more the candidate answers that can be
generated by the LBS provider, and the more the
computing and communicating resources of the mo-
bile devices that will be spent on dealing with these
additional candidate answers.

5.1 Experimental settings

Based on the realistic road infrastructure of the
San Francisco Bay area, we construct our data by
using the generator of network-based moving objects
(Brinkhoff, 2002), which simulates the movement for
a group of mobile users varying from 2000 to 5000.

For each scenario of the experiments, the sim-
ulation time is 200 s during which each mobile user
randomly selects a certain moment to launch a query.

Without losing generality, we consider the pro-
cessing time for a message, including receiving and
sending times, to be 100 ms for all mobile devices.

For user requirement, the k-anonymity varies
within a range of [10, 70] (default as [20, 50]) and
the transmission range is between 100 and 200 m,
randomly set for each user.

For all the experiments, the default values for
MaxAcceptHop and MaxValidTim are 10 s and 8 s,
respectively, and the default value of p for the EDA
algorithm is 0.8.

For communication overhead measurement, we
suppose that the length of either a P2P communi-
cation message or a location record is 64 bytes, and
parameter uid in a record is 4 bytes, which will be
used in calculating the negotiation message.

All algorithms are implemented by Java and run
on a personal computer with Intel Core2 Quad 2.4
GHz CPU and 1.96 GB RAM. The specification of
simulation parameters is summarized in Table 2.
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Table 2 Experimental parameter specification

Parameter Value

User population 2000–5000
Simulation time 200 s
Message processing time 100 ms
k-anonymity [10, 40] to [40, 70]
Transmission range 100–200 m
MaxAcceptHop 6–12
MaxValidTime 4–10 s
p 0.7–1
Message length 64 bytes

5.2 Location records under Poisson distribu-
tion

Theorem 4 assumes that the numbers of records
with different hop values follow Poisson distribution.
In this experiment, we simulate a scenario of 3000
users sharing and receiving records for 200 s. We ob-
serve that the average number of records that a user
maintains is about 187. We also count the record
number of each hop. Fig. 3 gives the numeric re-
sults, showing that the distribution of the records is
in conformity with Poisson distribution. From Fig. 3,
we also calculate the rate parameter (λ) of Poisson
distribution, which equals 3.2.
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Fig. 3 Location records under Poisson distribution

5.3 Scalability analysis

We first evaluate the scalability of the algo-
rithms along with the increasing number of mobile
users from 2000 to 5000 (Fig. 4). Fig. 4a shows that
the on-demand and proactive algorithms achieve the
same anonymization success rate for all scenarios.
This is because they gather the same size group of
anonymity, which directly affects the anonymization
success rate. On the other hand, IS-HL, DA, and
EDA promise a higher success rate because they all
utilize some stale locations generated a short time
before, making it easier for users to fulfill their k-
anonymity requirements. We notice that the results

of IS-HL are slightly higher than those of on-demand
and proactive algorithms (since some historical loca-
tions can be used in IS-HL) but a little lower than
those of DA and EDA (since IS-HL is built on on-
demand mode, lower than dual-active mode). We
also notice that the results of EDA are slightly lower
than those of DA. This is because EDA prevents
some of the records with large hop from being fur-
ther broadcasted, whereas the DA algorithm does
not. So, DA can gather more anonymity.

Fig. 4b shows that the anonymizing time for
each query decreases with the growth of user pop-
ulation. This is because a larger population den-
sity allows a user to gather enough anonymity more
quickly. We notice that DA and EDA require less
time than the others. This is because these two al-
gorithms can actively share locations and use some
stale records, making it quicker to meet their k-
anonymity requirements.

As for the communication overheads, Fig. 4c
shows that IS-HL achieves the best performance, fol-
lowed by EDA, in terms of reducing communication
overhead. We can see that DA costs the most for all
scenarios while EDA costs only about 10% of DA’s
overhead, which proves the improvement of EDA
over DA in terms of communication overhead.

In Fig. 4d, we find that the region sizes gener-
ated by different algorithms follow DA < on-demand
= proactive < EDA < IS-HL. While generating re-
gions, all of DA, EDA, and IS-HL can use some stale
locations. However, DA does not consider user move-
ment, and thus can use closer stale locations, result-
ing in a smaller region. In contrast, both EDA and
IS-HL predict user movement and update new loca-
tions instead of the stale ones, and thus relatively few
nearby locations are available, resulting in a larger
region. Due to the different predicting techniques as
described in Section 4.3.3, the size of IS-HL is slightly
larger than that of EDA.

5.4 Impact of k-anonymity

Fig. 5 shows the performances of the algorithms
with the increasing k-anonymity privacy require-
ments from [10, 40] to [40, 70]. Note that as the
k-anonymity requirement gets stringent, all five al-
gorithms have to gather more locations to generate
CRs, which will decrease the success rate step by step
(Fig. 5a). This requires more running time for all the
algorithms (Fig. 5b) and larger region size (Fig. 5d).
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Fig. 4 Performance evaluation against different number of users: (a) anonymization success rate; (b) average
anonymizing time; (c) average communication overhead; (d) average region size
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Fig. 5 Performance evaluation against different k-anonymity: (a) anonymization success rate; (b) average
anonymizing time; (c) average communication overhead; (d) average region size

As a result, more communication overhead is re-
quired (Fig. 5c). The results also demonstrate that,
although EDA has lower success rate and longer
anonymizing time than DA, it costs much less (about
only 10%) communication overhead. This also veri-
fies Theorem 4.

5.5 Impact of privacy parameters

Fig. 6 shows the impact of parameter Max-
AcceptHop, which is increased from 6 to 12. It
is expected that as MaxAcceptHop increases, a

user can send and receive more location records
whose hop values are relatively large. As a result,
the anonymization success rate increases and the
anonymizing time decreases for both DA and EDA.
However, more communication overhead is required
to transmit these records with larger hop values. As
expected, we notice that EDA has lower success rate
and longer anonymizing time but less overhead than
DA.

The following group of experiments demon-
strates the influence of the parameter MaxValid-
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Time, which grows from 4 to 10, on the three algo-
rithms, IS-HL, DA, and EDA (Fig. 7). When Max-
ValidTime gets larger, we can infer that users can
utilize more out-of-date locations for CR generation,
which can increase the anonymization success rate
and reduce the anonymizing time (Figs. 7a and 7b).
Nevertheless, to transmit these records, communica-

tion overhead increases steadily with the increase of
MaxValidTime (Fig. 7c). Moreover, the region size
slightly increases with the MaxValidTime since users
can use more locations that have a longer distance
from themselves (Fig. 7d).

We also evaluate the performance of EDA
with respect to parameter p, which affects the
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Fig. 6 Performance evaluation against different MaxHop values: (a) anonymization success rate; (b) average
anonymizing time; (c) average communication overhead; (d) average region size
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Fig. 7 Performance evaluation against different MaxValidTime values: (a) anonymization success rate; (b)
average anonymizing time; (c) average communication overhead; (d) average region size
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Fig. 8 Performance evaluation against different probabilities: (a) anonymization success rate; (b) average
anonymizing time; (c) average communication overhead; (d) average region size

broadcasting probability for the LRHP strategy. In
the experiment, we increase the value of p from 0.7
to 1 (By Definition 2, p = 1 means that users will al-
ways broadcast every record to others). Fig. 8 shows
the results. It is expected that as p increases, the
communication overhead increases (Fig. 8c).

6 Conclusions

In this paper we have proposed dual-active
and enhanced dual-active algorithms for preserving
users’ location privacy while using LBS in a mobile
P2P network environment. As compared with other
solutions, we have made the following contributions:

1. With the LRHP strategy, EDA has been
able to lower the probability of broadcasting use-
less location records and thus to reduce commu-
nication overhead and promoting the quality of
anonymization.

2. EDA has been able to significantly reduce the
overhead of communications among users by mini-
mizing transmission of duplicate messages in the ne-
gotiation process.

3. With user-driven location prediction, EDA
has been able to solve the inaccuracy problem, which
is caused by using historical locations.

4. Experimental results have verified the effec-
tiveness and efficiency of our EDA algorithm.

For the next stage of study, we plan to imple-
ment the proposed solutions on real systems and in-
vestigate new solutions for defending peer-side at-
tacks and dealing with the challenging issues of mo-
bile P2P environments.
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