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Abstract:    Due to the importance of metal layers in the product yield, serpentine test structures are usually fabricated on test chips 
to extract parameters for yield prediction. In this paper, the confidence level and estimation precision of the average defect density 
on metal layers are investigated to minimize the randomness of experimental results and make the measured parameters more 
convincing. On the basis of the Poisson yield model, the method to determine the total area of all serpentine test structures is 
obtained using the law of large numbers and the Lindeberg-Levy theorem. Furthermore, the method to determine an adequate area 
of each serpentine test structure is proposed under a specific requirement of confidence level and estimation precision. The results 
of Monte Carlo simulation show that the proposed method is consistent with theoretical analyses. It is also revealed by wafer 
experimental results that the method of designing serpentine test structure proposed in this paper has better performance. 
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1  Introduction 
 

As technology nodes become smaller and chips 
become more complicated, the manufacturing of 
integrated circuits (ICs) needs more and more con-
ductive backend layers to connect all circuit cells. 
Defects on metal layers are easier to result in mal-
function of the entire chip than before. Fortunately, 
accurate yield prediction enables the manufacturer to 
control the quality of process steps and to make 
changes in the design before volume production, so 
risks can be reduced significantly.   

The accuracy of yield prediction on metal layers 
mainly depends on the ability to precisely character-
ize the defects. Defect densities and defect size dis-
tributions are the most important defect parameters. 

To extract these defect parameters, specially designed 
test structures are usually used. For metal layers, 
comb/serpentine test structures are frequently fabri-
cated on test chips to investigate issues about metal 
defects. Stapper (1973) obtained data with serpentine 
test structures, named ‘open circuit defect monitors’, 
which were used to determine defect densities of 
metal layers. Then comb/serpentine structures were 
introduced to evaluate defects occurring within the 
same layer (Sayah and Buehler, 1988; Michalka et al., 
1990). Afterwards, serpentine structures were para-
meterized as a part of test structures libraries to ra-
pidly generate customized test chips for low-power/ 
low-voltage complementary metal-oxide semicon-
ductor (CMOS) processes (Kumar et al., 1997). 
Subsequently, serpentine test structures were stacked 
over two metal layers to characterize the impact of the 
chemical mechanical polishing (CMP) process on 
multi-level interconnect performance (Fayolle et al., 
2000). In recent years, serpentine test structures, 
sometimes called ‘snake structures’ or ‘meander 
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structure’, were frequently used to investigate various 
issues about metal layers and yields (Teh et al., 2005; 
Hess et al., 2006; 2010; Lin et al., 2006; Karthikeyan 
et al., 2010; Chen et al., 2011; Tamaki et al., 2011; 
Jeong et al., 2012). All work done by prior research-
ers used serpentine structures to test defect densities 
of metal layers or to control back end of line (BEOL) 
fabrication processes. However, few investigations 
have been done on the reasons why they chose those 
certain areas of serpentine structures. The statistical 
theoretical bases of their choices for sample areas 
were not explained. To prevent the results from sub-
jecting to stochastic noise, further statistical analyses 
are necessary.   

Intuitively, a larger total area of serpentine 
structures will result in better yield precision; how-
ever, it will occupy more wafer area to fabricate them. 
On the other hand, a too small total area of serpentine 
test structures is inappropriate because the statistical 
randomness of yield results will become very signi- 
ficant. Besides the total area, it is necessary to inves-
tigate the area of each serpentine structure. If a ser-
pentine structure occupies an overly large area, the 
number of serpentine structures without defects will 
be very small, which will decrease the precision of the 
tested yield of metal layers. Conversely, the small 
area of a serpentine structure will prevent the phe-
nomenon of containing multiple metal defects in a 
serpentine structure, and thus will result in a more 
precise yield testing result, but more costs will be 
required. 

The design of an area-optimized serpentine 
structure considering confidence level and estimation 
precision is proposed in this paper. The mechanisms 
of metal faults are presented in Section 2, and yield 
models for metal layers are reviewed for the con-
venience of subsequent analyses. Section 3 describes 
the way to determine the appropriate total area of 
serpentine test structures and the appropriate area of 
each serpentine structure. The statistical bases to 
determine the area of serpentine structures are ana-
lyzed theoretically. In Section 4, good accordance is 
shown between simulation results and theoretical 
analyses. In addition, the performance of this design 
method is validated by wafer experiments and hypo-
thesis tests in Section 5. The conclusions are de-
scribed in Section 6. 

 

2  Metal failure mechanisms and yield model 
for metal layers 
 

When a new processing step is applied or a new 
technology node is introduced, new failure mecha- 
nisms of metal interconnections arise (Lin et al., 2002; 
Roesch and Hamada, 2004; Wahab et al., 2006; 
Arumi et al., 2008; Hsu et al., 2009). Generally, de-
fects on metal layers are classified into two types: 
missing material defects and extra material defects 
(Khare et al., 1994). Two typical defects of these 
types obtained from our test chips are shown in Fig. 1. 
Extra material defects may originate from dust on the 
wafer surface, particles in chemicals, and dirt on 
photolithographic patterns. Generally, extra material 
defects in conducting layers may cause short circuit 
failures, while extra material defects in insulating 
layers may cause open circuit failures. Missing ma-
terial defects may come from dust on the wafer sur-
face, missing material in photolithographic patterns, 
and over-etching on local metal lines. In conducting 
layers, if the size of a missing material defect is larger 
than the width of the metal line, an open circuit failure 
may occur. Similarly, in insulating layers, if the size 
of a missing material defect is larger than the space 
between two metal lines, a short circuit failure prob-
ably will arise. Since both two types of defects may 
cause open circuit and short circuit failures, to facili-
tate analysis, only open circuit failures of metal layers 
are focused in this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that not every metal defect has an influence 
on the connectivity of a circuit. The size and location 
of each defect determine whether a defect will cause a 
 

Fig. 1  Missing material defect (a) and extra material 
defect (b) on metal lines 

(a) (b) 
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fault in the implemented electrical network. Yield 
models are used to associate metal defects with metal 
failures. Wallmark (1960)’s yield model is the earliest 
used yield model. With the development of semi-
conductor technology, many other yield models have 
been proposed for better yield prediction. The Poisson 
yield model is one of the yield models frequently 
used.   

The serpentine structure can also be depicted by 
the Poisson yield model. The average defect density 
D  can be estimated by (Stapper, 1983) 

 
 s ss

s s

ln /ln
,

H NY
D

A A
                      (1) 

 

where Ys is the yield of serpentine test structures, sA  

is the average critical area of a serpentine test struc-
ture, Ns is the number of serpentine test structures 
used in testing, and Hs is the number of serpentine test 
structures having no fault. The average critical area 

sA  can be obtained by integrating the critical area 

function with the probability distribution function 
over all defect sizes (Stapper, 1983). For a serpentine 
test structure, the average critical area can be acquired 
by the way to calculate the average critical area of a 
large number of parallel conductive lines on a chip 
(Stapper, 1984): 
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where w is the line width, s is the space between metal 
lines, L is the line length, H is the width of each test 
chip, and x0 is the defect size where the probability 
distribution function reaches the peak. 

Let θ be the probability of failure, which can be 

obtained by dividing the average critical area sA  by 

the chip area Asc, so the average critical area can be 
expressed as (Stapper, 1983) 
 

s sc.A A                              (3) 

 
Using Eqs. (1)–(3), the requirements for the total area 
of serpentine test structures and the area of each ser-
pentine structure can be derived in Section 3. 

3  Serpentine structure considering confi-
dence level and estimation precision 
 

Serpentine test structures frequently appear in 
test chips to investigate open defects of metal layers. 
The total area of serpentine test structures needs to be 
large enough to guarantee the precision of the meas-
ured metal yield. This is because statistical random-
ness will become very significant with the use of a 
small area of serpentine structures. On the contrary, 
the total area of serpentine structures cannot be too 
large when testing costs and utilization efficiency of 
the wafer area are taken into account. Then the issue 
of how large an area is adequate for a certain precision 
demand is meaningful. 

Moreover, the precision of measured metal yield 
is not only related to the total area of serpentine 
structures but also related to the area of each serpen-
tine structure. Of course, in theory, a long metal line 
of test structure can be fabricated containing just one 
metal line. In this situation, the measured open metal 
yield approaches the actual yield in a high degree, but 
no foundry can bear such large testing costs. In reality, 
a serpentine structure made up of many parallel metal 
lines is a preferable choice. Though the precision of 
the measured result is decreased, a tolerable estima-
tion precision can be guaranteed by controlling the 
area of each serpentine structure. An overly large area 
of each serpentine structure will lead to most of the 
test structures containing multiple faults. Conse-
quently, the number of serpentine test structures with 
no defects will be too small, which will decrease the 
accuracy of the metal yield.   

Therefore, to improve the estimation precision 
of the measured results and make the yield more 
convincing, it is important to consider the total area of 
serpentine test structures and the area of each ser-
pentine structure, which can be further determined by 
confidence level and estimation precision when de-
signing serpentine test structures. 

3.1  Total area of serpentine test structures 

As an important structure to characterize open 
defects on metal layers, serpentine test structures are 
usually used to extract the parameter of average de-
fect density. Assuming M is the number of open ser-

pentine structures and tA  is the total average critical 

area of all serpentine structures, then M is a random 
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variable and it obeys the Poisson distribution (Stapper, 
1983). To improve the accuracy of the measured 

average defect density, the requirements for tA  can 

be expressed using the law of large numbers (Gert and 
Enrique, 2008): 
 

 t t
t

ˆ 1 ,
M

P D D P D
A

  
         
  

     (4) 

 

where D̂  is the measured value of average defect 

density, D  is the actual value of average defect den-
sity, 1−α (0<α<1) is the confidence level, and εt is the 
estimation precision.  

tA  can be cut into many small serpentine struc-

tures and these structures can be made exactly the 
same as each other. From Eq. (2), it can be inferred 
that if w and s remain the same, the average critical 
area of the obtained small serpentine structure will be 

directly proportional to t .A  The tA  will be equal to 

the sum of the average critical areas of all these small 
serpentine structures. Because the small serpentine 
structures can be made small enough to have only one 

defect on them, the measured D̂  could closely ap-

proach D . According to the property of the Poisson 
distribution, each small serpentine test structure will 
obey the Poisson distribution and these small struc-
tures will be independent of each other. Assuming the 
mean and variance of the large serpentine structure is 

t t ,A D   the mean and variance of each small ser-

pentine structure will be s t s t s .A D A D N N   

As described in the Lindeberg-Levy theorem 
(Billingsley, 1961), if random variables X1, X2, …, Xn 
are independent of each other and they obey the same 
distribution with limited mathematical expectations 
and variances E(Xi)=μ, D(Xi)=σ

2≠0 (i=1, 2, …, n), the 
following equation could be obtained: 
 

2 /21

2

1
lim e d ( ).

2π

n

k
x tk

x

X n
P x t x

n









      
 
  




 

  

(5) 
 

As described above, the divided small serpentine 
test structures are all independent of each other and 

they all obey the same Poisson distribution. Thus, 
with the use of the Lindeberg-Levy theorem de-
scribed in Eq. (5), Eq. (4) can be rewritten as 
 

   t t t
ˆ 2 / 1,P D D A D                 (6) 

 

where the requirements for tA  have been changed to 

the form of the standard normal distribution. To sa-
tisfy the confidence level in Eq. (4), let 

 t t2 1 1 ,A D      so requirements for tA  

can be obtained as 
 

2
/2

t 2
t

,
z D

A 


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where /2z  is the upper fractile of the standard nor-

mal distribution. In Eq. (7), it is the total average 

critical area of all serpentine structures tA  that is 

obtained, but the total area of all serpentine structures 
Atc in the actual chip may be preferred in practice. For 
a specific layout of serpentine test structure, the 
probability of failure θ is a constant. Using Eq. (3), 
the requirements for the total area of all serpentine 
structures Atc can be derived: 
 

2
/2

tc 2
t

.
z D

A 

 
                              (8) 

 
Just the satisfaction of the requirement in Eq. (8) is 
not enough to acquire a correct Atc. Usually, to apply 
the Lindeberg-Levy theorem to the Poisson distribu-
tion correctly, the premise 
 

t tc 20A D A D                          (9) 

 
should be satisfied too. Considering Eqs. (8) and (9) 
simultaneously, the requirements for the total area of 
all serpentine structures Atc can be summarized as 
 

2 2
tc /2 t tc/( ), 20.A z D A D                 (10) 

 
As long as the inequalities above are satisfied, Eq. (4) 
will be satisfied. As a result, the actual value of av-
erage defect density D  will be closely approached by 
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the measured average defect density ˆ ,D  which will 

lie in the interval ( , )t tD D    with a probability 

higher than 1−α.  

3.2  Area of each serpentine test structure 

In fact, the satisfaction of the requirement for the 
total area is not enough to acquire an accurate average 
defect density, because the area of each serpentine 
structure has an influence on the accuracy of this 
parameter too. Assuming the average critical area of a 

serpentine structure is s ,A  the yield of serpentine 

structures is s
s e .A DY   Taking the derivative of Ys, 

the equation below can be obtained: 
 

s
s se ,A DY A D                         (11) 

 
where sY  is the change in Ys and D  is the change 

in .D  It can be inferred from Eq. (4) that the precision 

requirement for D  is ˆ=D D D  <εt. Substituting εt 

for ,D  Eq. (11) can be rewritten as 

 
s

s s s te ,A DY A                       (12) 

 
where εs is the estimation precision of the test struc-
ture yield. Eq. (12) shows the relation between the 
estimation precision εs of the test structure yield and 
the estimation precision εt of the measured average 
defect density.   

For an accurate measurement of the yield of 
serpentine structures Ys, the following equation 
should be met: 
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    (13) 

 

where ŝY  is the measured yield of serpentine struc-

tures, Ys is the actual yield of serpentine structures, 
and 1−β (0<β<1) is the confidence level for the yield 
of serpentine structures. Every tested result of each 
serpentine structure can be viewed as the result of a 
Bernoulli trial and these results are independent of 
each other. In the total Ns serpentine test structures, 
the number of opened serpentine structures Hs obeys 

the binominal distribution, which can be denoted as 
 

s

ss s s( ) (1 ) , 0,1, 2, ....N kk k
NP H k C Y Y k   

 
(14) 

 
As described in the DeMovire-Laplace theorem 
(Konno, 2002; Luo et al., 2012), if random variable ηn 
obeys a binominal distribution with parameters of 
sample size n and probability p, for any x, it obeys 
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When the premise of the normal distribution  
approximation 
 

t
s s

s

e 5sA DA
N Y

A
                      (16) 

 
is satisfied, the DeMovire-Laplace theorem in Eq. (15) 
can be applied to Eq. (13), and the following equation 
can be obtained:  
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As shown in Eq. (17), the requirement for the yield of 
serpentine structures Ys has been changed to the form 
of a standard normal distribution. So as to satisfy the 
confidence level in Eq. (13), let  
 

s s

s s s
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and the requirement for the number of serpentine test 
structures Ns can be acquired: 
 

2
/2 s s

s 2
s
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.

z Y Y
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

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Ns can also be expressed in the form of the total av-

erage critical area of all serpentine structures tA  and 

the average critical area of a serpentine structure s ,A  
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s t s/ .N A A  Substitute Ns with t s/ ,A A  and substitute 

Ys with the basic yield formula s
s e ,A DY   and Eq. (18) 

can be rewritten as 
 

s

s

2
t t
2
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1 e
.

e
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Considering the premise of the normal distribution 
approximation in Eq. (16) and the requirement for the 
average critical area of a serpentine structure in Eq. 
(19) simultaneously, the requirements for the average 
critical area of each serpentine structure can be ob-
tained as 
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In Eq. (20), note that it is the average critical area of 

each serpentine structure sA  that is obtained. In 

practice, the area of each serpentine structure Asc in 
the actual chip may be preferred. If the area in Eq. (20) 
is denoted in the form of chip area, then by the use of 
Eq. (3), the requirements for the area of each serpen-
tine structure can be acquired: 
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Note that Atc in Eq. (21) must satisfy the requirements 
in Eq. (10). Solve the set of inequalities and the upper 
limit of Asc (that is, the upper limit of the area of each 
serpentine test structure) can be obtained. Unfortu-
nately, explicit solutions cannot be acquired from the 
inequalities above, but numerical solutions can still be 
obtained by numerical calculation software. 

3.3  Determination of optimal At  and As  

After range requirements for the total area of 
serpentine test structures and the area of each ser-
pentine structure are obtained, the measured average 

defect density of open defects on metal lines will be 
accurate enough and it could be used to predict metal 
yield for products. However, for different combina-

tions of tA  and s ,A  the area occupied by the serpen-

tine test structures differs significantly. To avoid 

wasting wafer by an inappropriate combination of tA  
and s ,A  further investigation of optimal combination 

is needed. 

For Eq. (7), 2 2
/2 t/z D   can be denoted as bA , so 

tA  can be expressed as b bK A  or 2 2
b /2 t/ ,K z D   where 

Kb is a coefficient larger than 1. Then, Eq. (19) can be 
rewritten as  
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If α and β take the same value, Eq. (22) can be further 
simplified as 
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In actual test chips, serpentine structures are 
connected by pads, which are arranged in the form of 
a pad frame. Each serpentine line on a test structure 
has two pins, and thus a couple of pads are needed to 
test a serpentine test structure. The total area Atotal 
occupied by the serpentine test structures including 
pads can be expressed as 
 

pad
total pad s tc b b

s

2 1
2 ,

A
A A N A K A

A 
 

    
 

      (24) 

 
where Atc is the total area occupied by the serpentine 
test structures without pads, and Apad is the area that a 
pad occupies. Solve Eq. (23), which is the inequality 
determining the upper critical area limit of each ser-
pentine test structure (IDUCALESTS), and then nu-

merical solutions to sA  corresponding to each Kb can 

be acquired. Substitute these numerical solutions into 
Eq. (24), and then a series of different values of Atotal 
can be obtained. Search the minimum area among 
these values and denote it as Atotal_min, and then the 

values of Kb and sA  corresponding to Atotal_min are just 
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the optimal Kb_opt and s_opt .A  The optimal total aver-

age critical area of serpentine test structures can be 

calculated by b_opt b .K A
 
 

The determination of optimal tA  and sA  in this 

paper is based on the area optimization. If the greatest 
concern is test time optimization instead of area op-

timization, the optimal choice of tA  and sA  will be 

different. The total testing time Ttotal for all serpentine 
structures can be expressed as 

 

b s b
total s s

s

,
A T K

T T N
A

                     (25) 

 
where Ts is the time used to test a serpentine structure. 

The solution process of optimal tA  and sA  for testing 

time optimization is similar to that for the minimum 
area optimization. Substitute numerical solutions to 

sA  corresponding to each Kb into Eq. (25), and then a 

series of Ttotal can be obtained. Search the minimum 
time among these values and denote it as Ttotal_min, and 

the values of Kb and sA  corresponding to Ttotal_min are 

just the optimal KbT_opt and sT_opt .A  For a specific 

confidence level and estimation precision, bA  is a 

constant; meanwhile, for a specific testing machine, 
Ts is also a constant, so the solution to minimum Ttotal 

is reduced to the solution to minimum b s/ .K A  Eq. (24) 

can be modified to 
 

b s
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             (26) 

 
and the solution to minimum Atotal can be reduced to 

the solution to minimum  b pad( / ) 1 /(2 ) .s sK A A A  

2Apad can be viewed as a constant, but the value of sA  

usually is comparable to the value of pad2 A , so the 

latter item pad/(2 )sA A  in the brackets makes the 

optimal KbT_opt and sT_optA
 
quite different from the 

optimal Kb_opt and s_opt .A  If testing time optimization 

is more important in a specific design of serpentine 

test structures, another combination of optimal tA  
and sA  can be acquired from Eq. (26). 
 
 
4  Simulations 
 

Monte Carlo simulations are performed on 
computers with MatLab R2010b to verify the prac-
tical effect of the method proposed above. In the be-
ginning, only the total area of serpentine test struc-
tures or only the area of each serpentine test structure 
is considered. In the latter part of simulations, both 
the total area of all serpentine test structures and  
the area of each serpentine test structure are consi-
dered. To facilitate comparison, the actual average 
defect densities used in the simulations are all 
5 defects/mm2.  

Six groups of simulations considering the total 

average critical area tA  of all serpentine test struc-

tures are shown in Fig. 2 to illustrate the practical 
effect of Eq. (7). Defects data in each group are re-
produced 10 000 times. It is clearly shown that the 

deviation of the measured D  will become more and 

more significant with the decrease of t .A  Generally, 

in statistics, α is taken as 0.05 and thus the confidence 
level 1−α is 0.95. Of course, if any other confidence 
level is required, the value of α can be taken according 
to actual demands. Compared with α, the estimation 
precision εt plays a more important role in determi-

nation of tA . The range of εt recommended is be-

tween the same order of magnitude as D  and two 

orders of magnitude smaller than .D  For instance, if 

D =5 defects/mm2, εt=1 defect/mm2, and α=0.05, 

then the result of tA  calculated by Eq. (7) will be 

larger than 19.2 mm2. The calculated result is in ac-

cordance with Fig. 2 rather well. For tA  larger than 

19.2 mm2, such as 500, 100, and 50 mm2, more than 

95% of the measured D  are within 20% deviation. In 

contrast, for tA  smaller than 19.2 mm2, such as 10, 5, 

and 1 mm2, the proportion of the measured D  within 
20% deviation is less than 95%. 

Another six groups of simulations only consi-
dering the average critical area of each serpentine test 
structure are shown in Fig. 3 to illustrate the 
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effect of Eq. (20). The total critical area At for six 
groups is all 1920.8 mm2, which satisfies the re-
quirement of At when α=0.05 and εt=1 defect/mm2. 
Defects data in each group are reproduced 10 000 
times. For comparison, the same defects data are 
tested six times as the data source of different groups, 
so the randomness of defects data for different groups 
is minimized. It is clearly shown that as As increases, 
the deviation of D  becomes larger. The upper limit 
of the average critical area in each serpentine struc-
ture can be determined by Eq. (20). The values of β 
and εt can be taken in the same way as α and εt which 
have been discussed before. When At=1920.8 mm2, 
β=0.05, and εt=1 defect/mm2, the calculated upper 

limit of sA  is 0.0375 mm2, which is in accordance 

with Fig. 3 quite well.   

When both tA  and sA  are considered, the 

IDUCALESTS are derived. For precision considera-
tion, the value of εt used in the next sets of simulations 
is taken as 0.1 defect/mm2, which is one order of 

magnitude smaller than .D  The calculated results of 

sA  corresponding to different values of Kb are shown 

in Fig. 4, which is also the solution to IDUCALESTS. 
It can be seen that when Kb is small, the upper limit of 

sA  increases rapidly; while Kb is large, the rate of 

increase of the upper limit of sA  decreases.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Five groups of simulations are performed to 
further verify the consistency between simulations 

and IDUCALESTS when both tA  and sA  are consi-

dered. The results of these simulations are shown in 
Table 1. To minimize the differences between other 
experimental conditions, all groups in the table have 
the same theoretical D  =5 defects/mm2, εt=0.1 de-
fect/mm2, α=0.05, β=0.05, and number of tests 10 000. 
Different choices of Kb in each group result in dif-

ferent values of tA  and different upper limits of s.A  

In Groups 1, 3, 4, and 5, the percentages of tests with 
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Fig. 4  Upper limit of sA  for inequality determining 

upper critical area limit of each serpentine test 
structure (IDUCALESTS) 
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deviations within εt are larger than 95%, which have 
reached our targeted confidence level. Group 2 is a 

reference group relative to Group 1, and the sA  in 

Group 2 is slightly larger than the calculated upper 

limit of sA  in IDUCALESTS. Correspondingly, the 

percentage of tests with deviations within εt does not 
meet the requirement of the confidence level 1−α, so 
the precision of IDUCALESTS is pretty good. 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

To find the optimal combination of tA  and sA  

for area optimization, Eq. (24) is used to determine 
the two parameters. When D =5 defects/mm2, 
εt=0.1 defect/mm2, α=0.05, and β=0.05, the calculated 

bA  is 1920.8 mm2. In SMIC 45 nm technology, the 

relation of Atotal and Kb is as shown in Fig. 5. When 

Kb=1.10 and sA =0.0375 mm2, the minimum Atotal 

acquired is 13 961 mm2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Wafer experiments 
 

Two types of serpentine test structures are de-
signed and performed on test chips by SMIC 45 nm in 
our experiments. One type is a new serpentine test 
structure (NSTS) which is designed using the method 
proposed in this paper; the other type is the original 
serpentine test structure (OSTS) designed by previous 
design method. As conductive lines are denser in 
Metal-1, defects in this layer are easier to generate a 
faulty circuit, so the NSTS and OSTS are fabricated 
on Metal-1. To reduce the differences in the number 
of metal open defects caused by randomness, the 
NSTS and OSTS are designed on the same 350 test 
chips and the locations of the two types of test struc-
tures are designed close to each other on each test chip. 
The area of each test chip is 1 cm2 and each test chip 
also includes other types of test structures. The NSTS 
and OSTS occupy only a small part of an entire test 
chip. 

In OSTS, each serpentine structure occupies 
0.118 mm2 and each test chip has 32 serpentine 
structures, so the area occupied by OSTS on each test 
chip is 3.8 mm2. The number of OSTSs is 11 200, so 
in total, there are 1321 mm2 used in the fabrication of 
the OSTS. The area of each serpentine test structure 
and the total area of all serpentine test structures here 
are determined by previous experience of designers. 

In NSTS, the optimal coefficient Kb calculated 
by Eq. (24) for area optimization is 1.07 when the 
confidence level and estimation precision are taken as 
0.95 and 0.10 defect/mm2, respectively. Correspon-
dingly, the calculated minimal Atotal is 7174 mm2. The 
area of each serpentine test structure used here is 
0.320 mm2 and each test chip has 64 serpentine 
structures, so the area occupied by NSTS on each test 
chip is 20.5 mm2.  

The layout of an NSTS fabricated on the Metal-1 
layer is shown in the lower part of Fig. 6. An NSTS is 
composed of two pads and many connected parallel 
metal lines. These metal lines occupy a region with 
length L and width H, and these two parameters are 
useful in critical area calculation using Eq. (2). The 
two pads, pad_A and pad_B, are boxed by dotted 
lines in the lower right of Fig. 6. The rest of the pads 
shown are used to measure test structures on other 
layers. A small part of NSTS is magnified in the upper 
part of Fig. 6 to show some details about the NSTS 

Table 1  Verification of the consistency between simu-
lations and IDUCALESTS 

Group Kb 
tA  

(mm2) 

Upper 
limit of 

sA (mm2) 

sA  

(mm2) 

Deviation 
within εt 

(%) 

1 1.05 2016.8 0.019 360 0.0193 95.04 

2 1.05 2016.8 0.019 360 0.0194 94.95 

3 5 9604.0 0.5321 0.53 95.02 

4 25 48 020 0.9589 0.95 95.03 

5 50 96 040 1.1293 1.12 95.01 

IDUCALESTS: inequality determining upper critical area limit 
of each serpentine test structure 
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layout. Two parameters w and s of metal lines are also 
labeled in Fig. 6, where w is the width of metal lines 
and s is the space between adjacent metal lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An electrical test is needed to judge whether the 
serpentine test structure is open or not. When being 
tested, pad_A and pad_B of an NSTS are connected to 
two probe pins of a digital tester. A fixed voltage is 
applied to these two pads, and the generated current is 
monitored. Using Ohm’s law, the resistance of an 
NSTS can be obtained by V/I, where V is the meas-
ured voltage and I is the measured current. The size of 
each NSTS is already known and the sheet resistance 
of Metal-1 is also known, so the theoretical resistance 
of an NSTS is acquired. To determine whether an 
NSTS is open or not, a threshold resistance Rth is set at 
least one order of magnitude larger than the  
theoretical resistance of an NSTS. When the meas-
ured resistance of an NSTS is smaller than Rth, the 
NSTS is thought to have no open faults; when the 
measured resistance of an NSTS is larger than Rth, the 
NSTS is believed to have open faults. 

To fully investigate the measured results of the 
two types of serpentine test structures, 16 groups of 
experiments fabricated on test chips are performed. 
350 test chips are contained in each group and the 
total number of test chips in all groups is 5600. In 
each group, an average defect density obtained by 
OSTS and an average defect density obtained by 
NSTS are acquired. Therefore, 32 measured average 
defect densities are obtained in total. The tested re-
sults are shown in Table 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypothesis testing is utilized to investigate the 

statistical significance of measured results of the two 
structures. More specifically, an F-test is used to 
evaluate whether the measured average defect densi-
ties have the same variance (Montgomery and Runger, 

2002). If the null hypothesis H01 is 2 2
1 2 ,   and the 

alternative hypothesis is 2 2
1 2 ,   then the F statistic 

can be defined by 
 

2 2
1 2/ ,F S S                            (27) 

 

where 2
1S  and 2

2S  are sample variances of the two 

types of serpentine test structures. The numbers of 
observations of OSTS and NSTS are both 16, so the 
degrees of freedom for the two structures are both 15. 
The significance level is set as 0.05 and the results of 
F-test are shown in Table 3. It is indicated from the 
values of the F statistic and two-tail P-value that 
variances of the two structures are significantly dif-
ferent. In addition, the variance of the NSTS is much 
smaller than the variance of OSTS, which means that 

Table 2  Measured results of 16 groups of wafer 
experiments 

Group
Nopen Ys D  (mm2) 

OSTS NSTS OSTS NSTS OSTS NSTS

1 476 2807 0.9575 0.8746 2.7400 2.7004

2 479 2851 0.9572 0.8727 2.7577 2.7457

3 453 2770 0.9596 0.8763 2.6049 2.6623

4 459 2785 0.9590 0.8756 2.6401 2.6778

5 491 2864 0.9562 0.8721 2.8283 2.7592

6 464 2845 0.9586 0.8729 2.6695 2.7396

7 475 2823 0.9576 0.8739 2.7342 2.7169

8 457 2774 0.9592 0.8761 2.6284 2.6665

9 471 2804 0.9579 0.8748 2.7106 2.6973

10 458 2779 0.9591 0.8759 2.6342 2.6716

11 481 2857 0.9571 0.8724 2.7695 2.7519

12 463 2817 0.9587 0.8742 2.6636 2.7107

13 462 2796 0.9587 0.8751 2.6577 2.6891

14 503 2805 0.9551 0.8747 2.8991 2.6983

15 492 2907 0.9560 0.8702 2.8342 2.8036

16 481 2797 0.9571 0.8751 2.7695 2.6901

Nopen: number of measured open serpentine test structures; Ys: yield 

of serpentine test structures for OSTS and NSTS; :D  measured 

average defect density for OSTS and NSTS. NSTS: new serpentine 
test structure; OSTS: original serpentine test structure 

 

Fig. 6  Layout of a new serpentine test structure (NSTS)
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the measured average defect density of NSTS is more 
stable than that of OSTS.   

Welch (1947)’s t test is used to further evaluate 
the statistical significance of the measured means of 
the two serpentine test structures. If the null hypo-
thesis H02 is μ1=μ2, and the alternative hypothesis is 
μ1≠μ2, then the t statistic can be expressed as 
 

1 2

2 2
1 2

1 2

,
X X

t
S S
n n






                      (28) 

 
where 1X  and 2X  are sample means of the two types 

of test structures, n1 and n2 are numbers of observa-
tions of OSTS and NSTS, respectively. The 
Welch-Satterthwaite equation 
 

 22 2
1 1 2 2

2 2
1 1 2 2

1 2

/ /

/ /
1 1

S n S n

S n S n
n n







 

                     (29)
 

 
is used to approximate the degree of freedom asso-
ciated with Welch’s t test. When υ is not an integer, it 
will be rounded to calculate two-tail probabilities. 
The results of the t-test for the two serpentine test 
structures are shown in Table 4, where the  
significance level is taken as 0.05. Because the two 
types of test structures are fabricated on the same test 
chip and their locations are close to each other, the 
means of the OSTS and NSTS should not be signifi-
cantly different. As shown in Table 4, this is also 
consistent with the results indicated by the t statistic 
and two-tail P-value. 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is revealed by the results of the two hypothesis 
tests that the means of the OSTS and NSTS are not 
significantly different while the variances of the two 
serpentine test structures are significantly different. 
By carefully designing the total area of all serpentine 
test structures and the area of each serpentine test 
structure, the NSTS has a more stable measured av-
erage defect density. In addition, the deviation be-
tween the measured and the actual average defect 
densities is believed to be within 0.1 defect/mm2 with 
a probability higher than 95%. Hence, it is proved by 
various data that the NSTS designed using the pro-
posed method has better performance. 
 
 
6  Conclusions 
 

With the increase of backend processes asso-
ciated with metal layers, the confidence level and 
estimation precision of the measured average defect 
density become more important. The proposed me-
thod of determining the total area of all serpentine test 
structures and the area of each serpentine test struc-
ture changes the status of designing serpentine 
structures mainly based on past experience, and it 
increases the statistical significance of the measured 
average defect density, resulting in more convincing 
measured results. By carefully selecting actual re-
quirements for confidence level and estimation pre-
cision, adequate combinations of the total area of all 
serpentine test structures and the area of each ser-
pentine test structure can be acquired. Monte Carlo 
simulations show that the confidence level and esti-
mation precision of the measured average defect 
density are indeed affected by the choices of the total  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Two-sample Welch’s t-test for means 

Type Mean Variance 
Number of 

observations
Degree of freedom t statistic 

Two-tail 
P-value 

Two-tail t 
critical 

OSTS 2.7213 0.007 256 16 21 
0.4279 0.6731 2.0796 

NSTS 2.7113 0.001 534 16 21 

 

Table 3  Two-sample F-test for variances 

Type Mean Variance 
Number of 

observations
Degree of freedom F statistic

Two-tail 
P-value 

Two-tail F 
critical 

OSTS 2.7213 0.007 256 16 15 
4.7296 0.0047 2.8600 

NSTS 2.7113 0.001 534 16 15 
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area of all serpentine test structures and the area of 
each serpentine test structure. The results of other 
simulations are also consistent with the expected 
results of the proposed method. In wafer experiments, 
data collected from test chips fabricated by the SMIC 
45 nm technology indicated that the proposed method 
has better performance. It should be noted that despite 
the focus on open failure of metal layer in this paper, 
the proposed designing method can be extended for 
other failure modes to extract more accurate  
parameters. 
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Abstract: For accurate prediction of via yield, via chains are usually fabricated on test chips to investigate 
issues about vias. To minimize the randomness of experiments and make the testing results more con-
vincing, the confidence level and estimation precision of the via failure rate are investigated in this paper. 
Based on the Poisson yield model, the method of determining an adequate number of total vias is obtained 
using the law of large numbers and the de Moivre-Laplace theorem. Moreover, for a specific confidence 
level and estimation precision, the method of determining a suitable via chain length is proposed. For area 
minimization, an optimal combination of total vias and via chain length is further determined. Monte Carlo 
simulation results show that the method is in good accordance with theoretical analyses. Results of via 
failure rates measured on test chips also reveal that via chains designed using the proposed method has a 
better performance. In addition, the proposed methodology can be extended to investigate statistical sig-

nificance for other failure modes. 


