
He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 612 

 

 

 

 

A membrane-inspired algorithm with a  

memory mechanism for knapsack problems* 
 

Juan-juan HE†1, Jian-hua XIAO2, Xiao-long SHI1, Tao SONG†‡1 
(1Key Laboratory of Image Processing and Intelligent Control, School of Automation, Huazhong University of  

Science and Technology, Wuhan 430074, China) 

(2The Logistics Research Center, Nankai University, Tianjin 300071, China) 
†E-mail: hejuanjuan1117@gmail.com; songtao0608@hotmail.com 

Received Jan. 3, 2013;  Revision accepted June 17, 2013;  Crosschecked July 12, 2013 

 

Abstract:    Membrane algorithms are a class of distributed and parallel algorithms inspired by the structure and behavior of living 
cells. Many attractive features of living cells have already been abstracted as operators to improve the performance of algorithms. 
In this work, inspired by the function of biological neuron cells storing information, we consider a memory mechanism by in-
troducing memory modules into a membrane algorithm. The framework of the algorithm consists of two kinds of modules 
(computation modules and memory modules), both of which are arranged in a ring neighborhood topology. They can store and 
process information, and exchange information with each other. We test our method on a knapsack problem to demonstrate its 
feasibility and effectiveness. During the process of approaching the optimum solution, feasible solutions are evolved by rewriting 
rules in each module, and the information transfers according to directions defined by communication rules. Simulation results 
showed that the performance of membrane algorithms with memory cells is superior to that of algorithms without memory cells for 
solving a knapsack problem. Furthermore, the memory mechanism can prevent premature convergence and increase the possibility 
of finding a global solution. 
 
Key words:  Membrane algorithm, Memory mechanism, Knapsack problem  
doi:10.1631/jzus.C1300005                      Document code:  A                      CLC number:  TP301 
 
 

1  Introduction 
 

Membrane computing, a new branch of natural 
computing, has become a hot topic in recent years. 
The computing models investigated in membrane 
computing (usually called P systems) are now known 
as a group of bio-inspired distributed and parallel 
computing models. They are abstracted from the 
structure and functions of living cells, as well as the 
organization of cells in tissues and organs, including 

the human brain (Pan and Pǎun, 2009; Niu et al., 2011; 
Pan et al., 2011a; Zhang et al., 2011). Until now, P 
systems have produced many theoretical results and 
had many applications, such as computing functions 
(Zhang et al., 2010), computing/generating sets of 
natural numbers (Zhang et al., 2009a), generating 
languages (Zhang et al., 2009b), as well as solving 
practical problems (Zhao and Wang, 2011; Yang and 
Wang, 2012a). 

P systems with cell reproduction can (theoreti-
cally) generate exponential work space, thus making 
it possible to trade space for time, and provide a way 
to solve computationally hard problems in feasible 
(polynomial or linear) time. Ishdorj et al. (2010) 
solved two well-known PSPACE-complete problems 
by spiking neural P systems using pre-computed re-
sources. Neuron division and budding are introduced 

Journal of Zhejiang University-SCIENCE C (Computers & Electronics) 

ISSN 1869-1951 (Print); ISSN 1869-196X (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 

 

‡ Corresponding author 

* Project supported by the National Natural Science Foundation of China 
(Nos. 61033003, 91130034, 61100145, 60903105, and 61272071), the 
PhD Programs Foundation of the Ministry of Education of China 
(Nos. 20100142110072 and 2012014213008), and the Natural Science 
Foundation of Hubei Province, China (No. 2011CDA027) 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013 



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 613

into spiking neural P systems such that exponential 
work space can be generated in an efficient way. 
Spiking neural P systems with neuron division and 
budding can solve computationally hard problems, 
such as the satisfiability problem (Pan et al., 2011b). 
Spiking neural P systems with weights were consid-
ered by Wang et al. (2010). Spiking neural P systems 
consisting of two kinds of neurons, and time-free 
spiking neural P systems have proved to be Turing 
universal by Pan and Pǎun (2010) and Pan et al. 
(2011c), respectively. The above solutions were given 
in an exact way at the theoretical level. However, it is 
useful to have approximate optimum solutions for 
realistic problems. Membrane computing has inspired 
some operations that have been proved to be useful 
for algorithms finding approximate optimum solu-
tions. Algorithms with operations inspired by mem-
brane computing are called membrane algorithms. 

The membrane algorithm was initiated for the 
traveling salesman problem (Nishida, 2006). The 
results showed that such algorithms are rather effi-
cient in solving that problem. In recent years, many 
kinds of membrane algorithms have been presented 
for various problems and have proved to be successful 
in finding optimal solutions. Inspired by the hierarchy 
of a living cell, three membrane algorithms were 
constructed to deal with single-objective problems 
(Huang and Wang, 2006), multi-objective numerical 
optimization problems (Huang et al., 2007), and dy-
namic multi-objective optimization problems (Huang 
et al., 2011), respectively. Combining differential 
evolution algorithms with tissue P systems, another 
membrane algorithm was proposed for solving manu-
facturing parameter optimization problems (Zhang et 
al., 2013). Many membrane algorithms have been 
proposed for solving practical problems, such as 
broadcasting problems (Zhang et al., 2012a), image 
processing (Zhang et al., 2012b), and parameter es-
timation for fluid catalytic cracking unit (FCCU) 
reactor-regenerator models (Yang and Wang, 2012b). 
The results reported show their excellent performance. 

Zhang et al. (2008) used knapsack problems to 
compare two frameworks of membrane algorithms, 
the nested framework and the one-level framework. 
The simulation results showed that both frameworks 
are efficient in solving computationally hard prob-
lems, but that a membrane algorithm with a one-level 
framework performs better than a membrane algo-

rithm using a nested framework. Membrane algo-
rithms with a one-level framework can increase the 
population diversity at the beginning of the computa-
tion. As the process continues, the best found solution 
is used as a start point for further searching. In this 
way, feasible solutions easily converge on a single 
point once a better solution is found. This property 
can provide an easy way to converge to local optima 
but fails to enhance the capacity of global searching. 

In this work, inspired by the fact that neurons in 
the human brain can work in a distributed manner to 
process and store information, we consider a variant 
of a membrane algorithm with a memory mechanism, 
called ‘membrane algorithm with memory mecha-
nism’ (RMA). The RMA uses quantum-inspired bit 
(Q-bit) to represent individuals in a population. 
Unlike binary, numeric, or symbolic representation, 
Q-bit, as a probabilistic representation, can represent 
a linear superposition of states (binary solutions). In 
this way, a Q-bit individual expresses more than one 
state, thereby providing more population diversity 
than other representations. The algorithm consists of 
two kinds of modules, computation and memory 
modules, in which cells are arranged in a circular 
topology and can store and process information, as 
well as exchange information among themselves. The 
computation modules are used to explore the search 
space by using Q-gate as an updating operator. 
Memory processors are used as local memories to 
form a stable network retaining the best positions 
found so far. The process of searching for the opti-
mum solution is determined by various rules in dif-
ferent cells, where feasible solutions denoted by Q-bit 
are evolved by the rewriting rule in each cell. The 
information transfers among different cells according 
to directions defined by the communication rules. We 
carried out a number of simulations to test the per-
formance of the RMA by solving knapsack problems 
with different items, and compared our results with 
those from using a typical genetic algorithm and other 
two Q-bit representation algorithms. Simulation re-
sults showed that the RMA performed well compared 
to the typical genetic algorithm. It also performed 
well in terms of stability and its ability to search for 
solutions compared to a traditional quantum-inspired 
evolutionary algorithm and another membrane algo-
rithm with a one-level framework, also using Q-bit 
representation.  



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 614 

2  A membrane algorithm for solving knap- 
sack problems 

 
A knapsack problem is a typical combinatorial 

optimization problem, and can be formulated as Eqs. 
(1) and (2). Given a set of m items and a knapsack 
with a weight limitation, with each item having a 
weight and a value, maximize the profit function 

 

1

fit( )
m

k k
k

x p x


                          (1) 

subject to 

1

,
m

k k
k

w x C


                            (2) 

 
where pk, wk, and C are non-negative integers, pk is the 
profit of the kth item, wk is the weight of item k, and C 
is the capacity of the knapsack, xk{0, 1}, for k=1, 
2, …, m, and m is the number of items. If xk=1, the kth 
item is selected for the knapsack; xk=0 means that the 
kth item is not selected for the knapsack. In the fol-
lowing, we introduce an algorithm for solving knap-
sack problems. We first introduce the membrane 
structure of the RMA, and then present the procedure 
and rules. 

2.1  Membrane structure 

With the aim of preventing premature conver-
gence to increase the possibility of finding a global 
solution, a more restrictive communication topology 
can be used to control the speed of information 
propagation in algorithms. Using more restrictive 
communication to slow down the convergence speed 
of algorithms is not new; many restrictive commu-
nication topologies have proved to be effective, such 
as ring, star, or von Neumann (Li, 2010). Considering 
premature convergence of membrane algorithms with 
a one-level framework, we use the ring topology to 
connect two kinds of cells, computation cells (mod-
ules) and memory cells (modules), in a particular 
communication manner. Every computation cell, 
labeled 1, 2, …, num, has its relative memory cell, 
labeled m1, m2, …, mnum, respectively. Each compu-
tation cell i interacts only with its immediate memory 
neighbors mi−1 and mi+1, and its relative memory cell 
mi, but no computation cells. Each memory cell mi 
also connects two neighboring computation cells i−1, 
i+1 and its corresponding computation cell i. Three 

examples of this ring topology are shown in Fig. 1, 
with num=2, 4, or 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The memory cells can be used as ‘anchor’ points, 
providing the best solutions found so far. Meanwhile, 
each of the feasible solutions can be further improved 
by the computation cell. The updating processes oc-
cur only in computation cells. In each computation 
cell, a population of solutions is updated and outputs 
the best current solution. Then, the memory cells 
choose the best solution among the three solutions 
obtained in the neighboring computation cells and the 
solution maintained in them. A computation cell can 
be updated only if the next generation is the best one 
within its neighborhood, and has not been improved 
upon by a better neighbor. So, this is desirable for not 
only forming a stable network, but also slowing down 
the speed of convergence to prevent premature  
convergence. 

The best solution in the neighborhood of the ith 
point is the same as those of its two immediate 
neighboring members, (i−1)th and (i+1)th points, but 
differs from those of members in the neighborhoods 
further out (Fig. 2). Since the individuals search in 
their local neighborhood instead of throughout the 
population, the feasible solutions in different memory 
cells can differ. Searching for solutions in this way, 
this ring framework with two types of cells can help 
maintain better population diversity, and provides a 
 

 
 

 
 
 
 
 

Fig. 1  Three examples of the ring topology 
(a) A conventional ring topology using no local memory and 
with the number of computation cells num=2; (b) The simplest 
structure using local memory, with num=4; (c) A more com-
plicated structure with num=6 

(a)                          (b)                                   (c) 

Fig. 2  The communication strategy 
Each member communicates with its two immediate 
neighbors (left and right) 

i−1 i+1 i



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 615

mechanism to slow down information propagation in 
the population. 

2.2  Procedure of the RMA 

Before describing the procedure of the RMA, the 
definitions of Q-bit and Q-gate are addressed briefly 
in the following. More details can be found in Hey 
(1999). 
Definition 1 (Q-bit)    A Q-bit is the smallest unit of 
quantum information. It is defined by a pair of num-
bers (α, β) as 

 

,
 
 
 




                                (3) 

 
where |α|2+|β|2=1. |α|2 is the probability that the cor-
responding bit will be set to ‘0’ state. |β|2 is the 
probability that the corresponding bit will be set to ‘1’ 
state. 

A Q-bit individual can be represented as a string 
of Q-bit: 

 

1 2

1 2

...
,

...
m

m

  
  
 

  
 

q                      (4) 

 
where |αk|

2+|βk|
2=1, k=1, 2, …, m. A Q-bit individual 

represents a linear superposition of states. Observing 
a Q-bit individual, a binary sequence is produced 
probabilistically. Here is an example of an individual 
with three Q-bits: 
 

1 1
1

2 3
.

1 6
0

32

 
 
 
 
 
 

                      (5) 

 
The states of (5) can be represented as: 

1/6|000,+1/3|001,+1/6|010,+1/3|011,+0|100,+0|101,
+0|110,+0|111,. This means that an individual with 
three Q-bits is able to represent the information of 
eight states. Specifically, the binary sequences {000}, 
{001}, {010}, {011}, {100}, {101}, {110}, {111} are 
obtained with probabilities 1/6, 1/3, 1/6, 1/3, 0, 0, 0, 0, 
respectively. Therefore, Q-bit representation can 
maintain population diversity. 
Definition 2 (Q-gate)    A Q-gate is defined as a 
variation operator of an algorithm with Q-bit repre-

sentation. The following rotation gate is used in the 
RMA: 
 

cos( ) sin( )
,

sin( ) cos( )
k k

k k

 
 
   

    
G                (6) 

 

where k=1, 2, …, m. A Q-bit can be evolved by a 
Q-gate as q'=G×q, and the Q-gate rotation angle Δθ 
decides the corresponding Q-bit toward either the ‘0’ 
or ‘1’ state. 

The procedure flow diagram is shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The main steps of the procedure are summarized 
as follows: 

Step 1: Initialize the structure of the algorithm 
and parameters, including num (the number of each 
kind of module), n (the number of individuals in each 
computation module), m (the number of items), t (the 
current iteration number), and MAX_GEN (the 
maximum number of generations). The individuals in 
the population of the potential solution are encoded 
by Q-bit using the following equation: 

 

1 2

1 2

...
,

...
m

m

  
  
 

  
 

q                     (7) 

Initialize the structure and 
data in all cells: t=0

Run rules in all computation cells: 
making, repairing, updating 

   Is the best 
solution in a computation 
cell the best in its memory 

neighborhood?

Run the rewriting rule 
in the corresponding 

memory cell

Y

Run the rewriting 
rule in the 

computation cell

N

t=MAX_GEN?

Halt and output 
the best solution

Y

Run communication rules in 
both computation cells and 

memory cellsN

t=t+1

Fig. 3  Main loop of the RMA 



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 616 

where |αk|
2+|βk|

2=1, k=1, 2, …, m. To observe a fea-
sible solution x=(x1, x2, …, xm) from such a Q-bit 
individual, a random number r is generated from the 
range (0, 1). If r<|βk|

2, the corresponding bit xk is set 
to 1; this means that the kth item is selected for the 
knapsack. Otherwise, xk is set to 0. 

Step 2: t=t+1. If t<MAX_GEN, repeat steps 35. 
Step 3: Start the computation in all computation 

cells. First, the set of solutions 
 

1,1 1,2 , num,{ , ,..., ,..., }t t t t t
i j nX x x x x  

 
is produced by making rules (Eq. (8)) from observing 

the states of 1 1 1 1 1
1,1 1,2 , num,{ , ,..., ,..., },t t t t t

i j nQ q q q q      where 

i=1, 2, …, num, j=1, 2, …, n. The process is similar in 
quantum computing. Because every computation cell 
contains n individuals with m bits, the system gener-
ates num×n individuals at the beginning in num×n×m 
steps. Then, repairing rules (Eq. (9)) are used to make 
sure that every solution satisfies the capacity. If 

1
,

m

k kk
w x C


  the knapsack is overfilled. One item 

is randomly selected from the current knapsack. 

Continue taking out items, until 
1

.
m

k kk
w x C


  If 

1
,

m

k kk
w x C


  the algorithm keeps loading items 

until the knapsack is overfilled. To satisfy the capac-
ity of the knapsack problem, the last item that is put in 
the knapsack is taken out. The cost is at least 
num×n×m steps for calculating the weights of the 
knapsack and two steps for setting xi (i is a random 
number). Afterwards, Q-bit individuals in Q(t) are 
updated by the updating rules (Eq. (10)). A rotation 
gate is applied to update Q-bit individuals as in 
quantum computing. Every bit needs two steps for 
updating by the rotation gate. The updating rule will 
cost 2×num×n×m steps. 

Step 4: When all the individuals in computation 
cells finish updating, the communication channels are 
opened. The copies of solutions in both computation 
and memory cells are sent into the cells to which they 
are connected by communication rules (Eq. (13)). The 
formalization of the communication rule can be ex-
pressed as (i, u/v, j), where u, v represent the objects 
(solutions or a set of solutions) in the searching areas i 
and j, respectively. This means that the system sends 
object u from region i to region j, and object v is sent 

from region j to region i at the same time. Because 
every cell connects with three neighbors, the com-
munication rules will cost 2×3×num steps. 

Step 5: If the best solution in computation cell i 
is the best within its neighborhood (fit(i)>best{fit(mi−1), 
fit(mi), fit(mi+1)}), the rewriting rule will be applied in 
memory cell mi (Eq. (11)). Otherwise, there exists at 
least one solution in the neighborhood that is better 
than the result after updating. This means that the 
updating process has failed in computation cell i in 
the current iteration. Then, the rewriting rule will be 
used in computation cell i (Eq. (12)). The computa-
tion cell i is ready for the next generation. The re-
writing rule will cost num×n×m steps to calculate the 
fitness of every feasible solution and 3×num steps for 
comparison. 

Step 6: When t=MAX_GEN, the termination 
criterion is met. The best solution is sent out of the 
system. 

In the above procedure, the rules of making, 
repairing, updating, rewriting, and communication 
are used in the parallel membranes. These rules are 
described mathematically as follows: 

1. Making rule, qt−1→xt: 
 

1 1 1
1 1 2

1 1 1
1 2

1 2

1 2

...
,

...

( , ,..., ),  {0,1},  1,2,..., .

If random[0,1] | | ,  then 1;

else 0.

t t t
t m

t t t
m

t t t t t
m k

t t
k k

t
k

x x x x k m

x

x

  
  



  


  



  
  
 


  

  
 

q

x    (8) 

 
2. Repairing rule, x→x': 
 

1 2 1 2

=1

1 1 1

1 1 1

=1

1

( , ,..., ),  ( , ,..., ),

{0,1},  {0,1},  1,2,..., .

If ,  then 0,  and

{ ,..., , ,..., }

{ ,..., , ,..., };

if ,  then 1,  and

{ ,...,

m

m m

k k

m

k k g
k

g g m

g g

m

k k g
k

g

x x x x x x

x x k m

w x C x

x x x x

x x x x

w x C x

x x

 

 

    
  

 

   

 

x x

1 1

1 1 1

, ,..., }

{ ,..., , ,..., }.

is an integer and random[1, ].

g m

g g m

x x

x x x x

g g m

 

 
















   




         (9) 

 



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 617

3. Updating rule, qt−1→qt: 
 

1 1 1
1 1 2

1 1 1
1 2

1 2

1 2

1

1

...
,

...

...
,

...

cos( ) sin( )
,

sin( ) cos( )

1,2,..., .

t t t
t m

t t t
m

t t t
t m

t t t
m

t t
k kk k

t t
k kk k

k m

  
  

  
  

  
  

  


  





  
  
 

     
  

                    
 

q

q
    (10) 

 
4. Rewriting rule 
(1) Rewriting rule in memory cell mi: 

 
max{ }

im ix X , 

where 

,1 ,2 ,

,

 is the solution in the th memory cell,

max{ } max{ , ,..., },

 is the th solution in the th computation cell,

1,2,...,num,  1,2,..., .

im

i i i i n

i j

x i

X x x x

x j i

i j n







  

 

(11) 
 

(2) Rewriting rule in computation cell i: 
 

min{ }
ii mX x ,  

where 

,1 ,2 ,

,

min{ } min{ , ,..., },

 is the th solution in the th computation cell,

 is the solution in the th memory cell,

1,2,...,num,  1,2,..., .
i

i i i i n

i j

m

X x x x

x j i

x i

i j n






  

 

(12) 
 

5. Communication rule, ( , / , ) :
qp mp X x q  

 

 is the set of solutions in the th computation cell,

 is the solution in the th memory cell,

,  are integers,  , [1,num],  | | 1.
q

p

m

X p

x q

p q p q p q






  
(13) 

 

The above rules clearly show how this  
membrane-inspired algorithm works. The computa-
tional complexity of RMA can be represented as 
O(num×n×m). In the following sections, we will de-
scribe extensive simulations to support the above 

statements. We use RMA to solve a knapsack problem 
with different items, and compare the results obtained 
by RMA with those obtained by three other algo-
rithms: a typical genetic algorithm, the traditional 
quantum-inspired evolutionary algorithm (QEA) 
(Han and Kim, 2002), and another membrane algo-
rithm with a one-level framework that also uses Q-bit 
representation (QEPS) (Zhang et al., 2008). To illus-
trate the efficiency of the framework of the membrane 
algorithm, the population size of QEA was set to n×m. 
Therefore, the computational complexity of QEA and 
QEPS can also be represented as O(num×n×m). 
Moreover, since both QEA and QEPS use randomly 
generated instances of knapsack problems to illustrate 
their performance, we also used such instances to 
evaluate the algorithm proposed in this study. 
 
 
3  Simulation results 
 

In all simulations, the following sets of data were 
considered: 

 
wk, uniformly random in the interval [1, 10], 

pk=wk+5, 
 
and the following average knapsack capacity was 
used: 

1

1
.

2

m

k
k

C w


   

 
Three instances of small scale knapsack prob-

lems with 150, 300, and 550 items, and five of large 
scale knapsack problems with 800, 1100, 1400, 1700, 
and 2000 items were considered. For each scale of 
problem, a particular instance was used. 

3.1  Angle selection 

The angle parameters used for the rotation gate 
were selected from Table 1, and were the same as 
those described by Han and Kim (2002). The Q-gate 
rotation angles θ1, θ2, …, θ8 could be selected easily 
by intuitive reasoning. x=(x1, x2, …, xm) is one indi-
vidual in a computation module. b=(b1, b2, …, bm) is 
the best individual in this population. For example, 
when xi=0, bi=0, and if the condition fit(x)≥fit(b) is 
false, the value of θ3 is set to a positive value to in-
crease the probability of state 1. If xi=1, bi=0, and the 



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 618 

condition fit(x)≥fit(b) is false, θ5 is set to a negative 
value to increase the probability of state 0. The angle 
Δθi affects the speed of convergence. Fig. 4 shows the 
results of using the RMA on the knapsack problems 
with 150, 300, and 550 items to find good parameter 
settings of θ3 and θ5. The number of computation cells 
was set to 10, and the size of the population was set to 4. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Three instances with different items were gen-

erated randomly. When simulations were carried out 
with the same number of items, the identical instance 
was used. The values of 0.0025π, 0.005π, 0.01π, 
0.02π, and 0.05π were tested for θ3 and −θ5. 

The best profit was obtained over 30 runs. The 
arithmetic average value was calculated from the best 
values obtained after running the procedure 30 times. 
From the results in Fig. 4a, some values for θ3 and θ5 
can be selected, such as 0.0025π and −0.0025π, 
0.005π and −0.005π, and 0.05π and −0.05π. In Figs. 
4b and 4c, we can see that the algorithm performed 
well when θ3=0.005π and θ5=−0.005π. The values of 
0.005π and −0.005π were chosen for θ3 and θ5, re-
spectively, for the following simulations because of 
the better profits they obtained. 

3.2  Size of the ring structure 

The size of the ring structure is an important 
parameter of the RMA. As described in Section 2.1, 
each computation cell has its corresponding memory 
cell. The number of computation cells (num) can be 
used to measure the size of the ring structure. The size 
num affects the balance of diversity and running time. 
For the diversity, because memory cells record local 
memories, different solutions can be obtained in 
every memory cell. As more memory cells are used in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the computation, more different solutions are ob-
tained for the next iteration. On the other hand, be-
cause the population size of the system is increased 
with the size of the ring structure, the running time is 
also increased. To investigate the effect of num on the 
performance of the RMA, three knapsack problems 
with 150, 300, and 550 items, respectively, were 
tested. The number of individuals in each computa-
tion cell n was set to 4. For all simulations, when the 
number of iterations was over 100, the termination 
criterion was met, because the results increased 
slightly after the 60th iteration (Fig. 5). 

Fig. 4  Best and average profits from using the RMA on 
knapsack problems with 150 (a), 300 (b), or 550 (c) items 
to find good parameter settings of θ3 and θ5 
The number of computation cells was set to 10, and the size 
of the population was set to 4. δ1, δ2, δ3, δ4, and δ5 were 
0.0025π, 0.005π, 0.01π, 0.02π, and 0.05π, respectively 

(a)

(c)

(b)

820

830

840

850

860

870

880

P
ro

fit

Best
Average

1580

1600

1620

1640

1660

1680

1700

1720

P
ro

fit

 

Best
Average

2900

2920

2940

2960

2980

3000

3020

3040

3060

P
ro

fit

 

Best
Average

3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5                         
5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5                         

Table 1  Selection of rotation angles θ1, θ2, …, θ8  

xi bi fit(x)≥fit(b) Δθi 

0 0 False  θ1 

0 0 True θ2 

0 1 False  θ3 

0 1 True θ4 

1 0 False  θ5 

1 0 True θ6 

1 1 False  θ7 

1 1 True θ8 

fit(·) is the function of profit. xi is the ith bit of the current solution; 
bi is the ith bit of the best solution. Here, θ1=0, θ2=0, θ3=Δθ, θ4=0, 
θ5=−Δθ, θ6=0, θ7=0, θ8=0 



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 619

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All the results were obtained over 30 runs with 

num varying from 1 to 10. Note that, if num=1, the 
population size of the RMA works as QEA and the 
information used for updating is obtained only from 
the best solutions found. When num<4, the RMA 
works without local memory and is used as QEPS. In 
addition, the curves in Fig. 5 were obtained by 
squares polynomial smoothing. The progress of the 
mean best profit with various values of num indicates 
that the RMA has a better balance between explora-
tion and exploitation as num increases from 1 to 10. 
This means that algorithms with more cells maintain 
better diversity and converge to a better solution 
quickly. 

The results of the simulations on different values 
of num from 1 to 10 are shown in Fig. 6. The results 
show that the solutions improve as the number of cells 
increases, and that the average profits stay at a stable 
level. The best profits increased with num because the 
greater the number of cells, the more directions to-
wards the optimal solution can be explored by the 
RMA. Since the ring topology forms a stable network, 
the mean best profits also increase with the size of the 
ring structure. With num increasing, more local op-
tima should be found. That is the reason why the 
mean profits of all cells stay at a steady level. Con-
sidering the running time, we set num=7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  The progress of the mean best profits of various 
numbers of computation cells (1, 3, 5, or 7) tested with 150
(a), 300 (b), or 550 (c) items 

700

720

740

760

780

800

820

840

860

M
e

an
 b

e
st

 p
ro

fit

 

 

num=1
num=3
num=5
num=7

5 10 15 20 25 30 35 40 45 50 55 60 65 70

5 10 15 20 25 30 35 40 45 50 55 60 65 70
2930

2940

2950

2960

2970

2980

2990

3000

Iteration number

M
e

an
 b

e
st

 p
ro

fit

 

num=1
num=3
num=5
num=7

M
e

an
 b

e
st

 p
ro

fit

num=1
num=3
num=5
num=71600

1610

1620

1630

1640

1650

 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70

(a) 

(b) 

(c) 

Fig. 6  Simulation results of three knapsack problems with 
150 (a), 300 (b), or 550 (c) items 
Best, B_average, and Average denote the best solution, mean
best solution, and mean solution of all memory cells, 
respectively 

(a)

(b)

(c)

1610

1620
 

1630  

1640  

1650  

1660  

1670  

1680  

1690  

P
ro

fit  

Best
 B_average  

Average  

1 2 3 4 5 6 7 8 9 10
2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

Number of computation modules

P
ro

fit

 

 
Best

 B_average
Average

830

835

840

845

850

855

860

865

870

875

880

885

P
ro

fit

 
Best

 B_average
Average



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 620 

3.3  Number of individuals in a computation cell 

Simulations using the RMA for the knapsack 
problems with 150, 300, and 550 items were carried 
out to investigate the effect of the number of indi-
viduals in a computation cell. The number of com-
putation modules, num, was set to 7, and the number 
of memory modules was also 7. The number of indi-
viduals in each computation module, n, varied from 1 
to 10. Results from the application of different values 
of n are shown in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In each simulation, the best profits and the mean 

best profits over 30 runs increased as the number of 
cells increased from 1 to 4, while the number of  
 

solutions increased little with more individuals when 
n>4 (Fig. 7). When n>4, the values of fitness were 
almost at the same level, except that the best profit 
was obtained when n=6 (Fig. 7c). Considering the 
length of running time, n=4 was chosen in this study. 

 
 

4  Comparison with other algorithms 
 
To evaluate the effectiveness of this ring topol-

ogy with two kinds of cells, we compared our algo-
rithm with three other algorithms—a typical genetic 
algorithm, the traditional QEA and QEPS. QEPS is 
another quantum-inspired evolutionary algorithm 
based on membrane computing, and has a one-level 
structure. Eight instances with different items were 
generated randomly. When simulations were carried 
out with the same number of items, the identical in-
stance was used. Simulation results over 30 runs with 
eight different items were collected, and summarized 
in Table 2 (num=7, n=4). 

The RMA yielded better results than GA, QEA, 
or QEPS. The results were also more stable, with 
smaller standard deviations, even when solving the 
larger knapsack problem. This may have been because 
QEA is a type of stochastic optimization algorithm 
requiring several operations, and the results of its 
solutions have poor stability. Moreover, QEA easily 
converges to a local optimum because of premature 
convergence. Compared with traditional QEA with a 
single processor, the RMA increases the number of 
individuals, which will increase the running time, as 
with QEPS. 

 
 

5  Conclusions 
 

In this work, a membrane-inspired algorithm is 
proposed. Inspired by the brain’s information proc-
essing, we use two types of cells, computation cells 
and memory cells, in a particular communication 
framework. In this framework, the RMA is designed 
for solving knapsack problems with different num-
bers of items. According to the simulation results, we 
have demonstrated that the RMA is able to induce 
stable behavior and perform well in solving knapsack 
problems. 

 

(a) 

(b) 

Fig. 7  Best and average profits from using the RMA on the
knapsack problem with 150 (a), 300 (b), or 550 (c) items 
The results were obtained with 100 iterations over 30 runs 

(c) 

1620

1630

1640

1650

1660

1670

1680

1690

1700

P
ro

fit

 

 

Best
Average

830

840

850

860

870

880

890

P
ro

fit

 

 

Best
Average

1 2 3 4 5 6 7 8 9 10

2960

2980

3000

3020

3040

3060

Number of individuals

P
ro

fit

 

 
Best
Average



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 621

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In the RMA, Q-bit representation and a Q-gate 
updating process are used. Previous algorithms using 
Q-gate as an updating operator (including QEA and 
QEPS) easily converge to a local optimum. To avoid 
premature convergence in the evolution, we introduce 
a memory mechanism in the algorithm, inspired by 
the function of biological neuron cells storing infor-
mation. The memory mechanism can maintain sev-
eral local optima and slows down the speed of con-
vergence. Moreover, instead of using the information 

from the current best individual for the updating 
process, RMA uses several good individuals and 
keeps multiple directions for expanding the searching 
area. In this way, the influence of the initial popula-
tion can be reduced and stable behavior is induced. 
The simulation results show that the RMA has greater 
stability than other algorithms. 

Understanding the computations going on in 
nature, using this knowledge to obtain more efficient 
algorithms or even new types of computers is a chal-
lenging and promising research topic. In biology, over 
300 different kinds of cells have been found in living 
organisms for performing specific tasks. A wider 
range of cells or communication mechanisms should 
be tried to discover new ideas, tools, techniques, and 
models for improving algorithms. 

Many real-world problems are ‘multimodal’ by 
nature. That is, they have multiple global and local 
optima. It might be desirable to locate not only the 
global optima but also some local optima that are 
considered as being satisfactory. In our method, so-
lutions obtained in memory cells are different from 
each other. Therefore, the algorithm can work on 
problems with multiple global and local optima. 
Moreover, many realistic optimization problems, 
such as bridge construction, aircraft design, and 
chemical plant design, require the simultaneous op-
timization of more than one objective function. We 
hope that the proposed algorithm can be used to solve 
multi-objective optimization. In addition, the RMA 
was implemented on a traditional computer in this 
study. The advantages of the ring topology with its 
particular communication mechanism would be more 
obvious when implemented on a distributed system. If 
the procedure were applied in distributed parallel 
processing hardware, the computational complexity 
would be O(n×m). 

 
References 
Han, K.H., Kim, J.H., 2002. Quantum-inspired evolutionary 

algorithm for a class of combinatorial optimization. IEEE 
Trans. Evol. Comput., 6(6):580-593.  [doi:10.1109/TEVC. 
2002.804320] 

Hey, T., 1999. Quantum computing: an introduction. Comput. 
Control Eng. J., 10(3):105-142.  [doi:10.1049/cce:19990 
303] 

Huang, L., Wang, N., 2006. An optimization algorithm in-
spired by membrane computing. LNCS, 4222:49-52.  
[doi:10.1007/11881223_7] 

Table 2  Simulation results for the knapsack problem* 

Number  
of items 

Method BS MBS WS STD

GA 845.8 838.5 820.6   7.2
QEA 844.0 831.9 820.5   6.9
QEPS 846.8 834.2 825.2   6.4

150 

RMA 854.2 847.4 838.9   4.5

GA 1652.6 1625.0 1606.0 10.5
QEA 1659.8 1639.6 1616.4 10.0
QEPS 1654.5 1638.8 1624.4 10.2

300 

RMA 1672.8 1661.1 1654.3   5.0

GA 2998.2 2972.2 2942.7 16.8
QEA 2993.5 2965.0 2941.8 14.9
QEPS 2995.3 2967.9 2941.2 12.3

550 

RMA 3012.4 2990.7 2978.3   8.5

GA 4291.1 4263.2 4233.0 18.5
QEA 4304.5 4263.5 4240.7 17.9
QEPS 4307.8 4269.1 4244.6 16.8

800 

RMA 4325.2 4296.1 4278.9 10.3

GA 5897.8 5856.0 5819.4 19.9
QEA 5891.3 5864.3 5832.6 19.6
QEPS 5910.3 5861.6 5836.5 18.7

1100 

RMA 5925.3 5902.8 5885.9   9.9

GA 7529.5 7491.1 7443.1 30.1
QEA 7544.6 7496.4 7465.3 19.7
QEPS 7556.2 7493.3 7452.6 20.4

1400 

RMA 7579.5 7541.1 7518.3 13.2

GA 9161.2 9115.5 9069.2 23.5
QEA 9134.8 9107.6 9057.0 23.3
QEPS 9165.2 9109.5 9074.7 21.6

1700 

RMA 9211.9 9170.2 9124.8 17.3

GA 10 715 10 649 10 574 30.7
QEA 10 714 10 652 10 591 28.6
QEPS 10 727 10 651 10 601 27.9

2000 

RMA 10 753 10 681 10 648 19.1
* The maximum number of generations was 100, the number of runs 
was 30, num=7, and n=4. BS, MBS, WS, and STD represent best 
solution, mean best solution, worst solution, and standard deviation, 
respectively 



He et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):612-622 622 

Huang, L., He, X., Wang, N., Xie, Y., 2007. P systems based 
multi-objective optimization algorithm. Progr. Nat. Sci., 
17(4):458-465.  [doi:10.1080/10020070708541023] 

Huang, L., Suh, I.H., Abranham, A., 2011. Dynamic multi- 
objective optimization based on membrane computing for 
control of time-varying unstable plants. Inf. Sci., 181(11): 
2370-2391.  [doi:10.1016/j.ins.2010.12.015] 

Ishdorj, T.O., Leporati, A., Pan, L., Zeng, X., Zhang, X., 2010. 
Deterministic solutions to QSAT and Q3SAT by spiking 
neural P systems with pre-computed resources. Theor. 
Comput. Sci., 411(25):2345-2358.  [doi:10.1016/j.tcs.2010. 
01.019] 

Li, X., 2010. Niching without niching parameters: particle 
swarm optimization using a ring topology. IEEE Trans. 
Evol. Comput., 14(1):150-169.  [doi:10.1109/TEVC.2009. 
2026270] 

Nishida, T.Y., 2006. Membrane algorithms. LNCS, 3850:55-66.  
[doi:10.1007/11603047_4] 

Niu, Y., Pan, L., Pérez-Jiménez, M.J., Font, M.R., 2011. A 
tissue systems based uniform solution to tripartite 
matching problem. Fundam. Inf., 109(2):179-188. 

Pan, L., Pǎun, G., 2009. Spiking neural P systems with anti- 
spikes. Int. J. Comput. Commun. Control, 4(3):273-282. 

Pan, L., Pǎun, G., 2010. Spiking neural P systems: an improved 
normal form. Theor. Comput. Sci., 411(6):906-918.  [doi: 
10.1016/j.tcs.2009.11.010] 

Pan, L., Daniel, D.P., Pérez-Jiménez, M.J., 2011a. Computa-
tion of Ramsey numbers by P system with active mem-
branes. Int. J. Found. Comput. Sci., 22(1):29-38.  [doi:10. 
1142/S0129054111007800] 

Pan, L., Pǎun, G., Pérez-Jiménez, M.J., 2011b. Spiking neural 
P systems with neuron division and budding. Science 
China Inf. Sci., 54(8):1596-1607.  [doi:10.1007/s11432- 
011-4303-y] 

Pan, L., Zeng, X., Zhang, X., 2011c. Time-free spiking neural 
P systems. Neur. Comput., 23(5):1320-1342.  [doi:10. 
1162/NECO_a_00115] 

Wang, J., Hoogeboom, H.J., Pan, L., Pǎun, G., Pérez-Jiménez, 
M.J., 2010. Spiking neural systems with weights. Neur. 
Comput., 22(10):2615-2646.  [doi:10.1162/NECO_a_000 
22] 

Yang, S., Wang, N., 2012a. A novel P systems based optimi-
zation algorithm for parameter estimation of proton  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

exchange membrane fuel cell model. Int. J. Hydr. Energy, 
37(10):8465-8476.  [doi:10.1016/j.ijhydene.2012.02.131] 

Yang, S., Wang, N., 2012b. A P systems based optimization 
algorithm for parameter estimation of FCCU reactor- 
regenerator model. Chem. Eng. J., 211-212:508-518.  
[doi:10. 1016/j.cej.2012.08.040] 

Zhang, G., Gheorghe, M., Wu, C., 2008. A quantum-inspired 
evolutionary algorithm based on P systems for knapsack 
problem. Fundam. Inf., 87(1):93-116. 

Zhang, G., Zhou, F., Huang, X., Cheng, J., Gheorghe, M., Ipate, 
F., Lefticaru, R., 2012a. A novel membrane algorithm 
based on particle swarm optimization for solving broad-
casting problems. J. Univ. Comput. Sci., 18(13):1821- 
1841.  [doi:10.3217/jucs-018-13-1821] 

Zhang, G., Gheorghe, M., Li, Y., 2012b. A membrane algo-
rithm with quantum-inspired subalgorithms and its ap-
plication to image processing. Nat. Comput., 11(4):701- 
717.  [doi:10.1007/s11047-012-9320-2] 

Zhang, G., Cheng, J., Gheorghe, M., Meng, Q., 2013. A hybrid 
approach based on differential evolution and tissue 
membrane systems for solving constrained manufacturing 
parameter optimization problems. Appl. Soft Comput., 
13(3):1528-1542.  [doi:10.1016/j.asoc.2012.05.032] 

Zhang, X., Wang, J., Pan, L., 2009a. A note on the generative 
power of axon systems. Int. J. Comput. Commun. Control, 
4(1):92-98. 

Zhang, X., Zeng, X., Pan, L., 2009b. On languages generated 
by asynchronous spiking neural P systems. Theor. Com-
put. Sci., 410(26):2478-2488.  [doi:10.1016/j.tcs.2008.12. 
055] 

Zhang, X., Jiang, Y., Pan, L., 2010. Small universal spiking 
neural P systems with exhaustive use of rules. J. Comput. 
Theor. Nanosci., 7(5):890-899.  [doi:10.1166/jctn.2010. 
1436] 

Zhang, X., Wang, S., Niu, Y., Pan, L., 2011. Tissue P systems 
with cell separation: attacking the partition problem. Sci. 
China Inf. Sci., 54(2):293-304.  [doi:10.1007/s11432-010- 
4162-y] 

Zhao, J., Wang, N., 2011. A bio-inspired algorithm based on 
membrane computing and its application to gasoline 
blending scheduling. Comput. Chem. Eng., 35(2):272- 
283.  [doi:10.1016/j.compchemeng.2010.01.008] 

 


