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Abstract:    This paper deals with a novel local arc length estimator for curves in gray-scale images. The method first estimates a 
cubic spline curve fit for the boundary points using the gray-level information of the nearby pixels, and then computes the sum of 
the spline segments’ lengths. In this model, the second derivatives and y coordinates at the knots are required in the computation; 
the spline polynomial coefficients need not be computed explicitly. We provide the algorithm pseudo code for estimation and 
preprocessing, both taking linear time. Implementation shows that the proposed model gains a smaller relative error than other 
state-of-the-art methods. 
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1  Introduction 
 

The length computation of a continuous curve 
segment in a digital image is a basic problem in nu-
merous applications, such as feature analysis (Deng et 
al., 2006; Zhang et al., 2011) and distance estimation 
in the real or virtual world (Tadrous, 2010). At first 
glance, the estimation process may be thought of as 
simple, but, in fact, it is a challenging task to obtain an 
accurate result. This is due to the partial loss of digital 
image boundary information in the digitization step. 
Many researchers have begun to focus on how to 
compute the continuous curve segment length 
(Coeurjolly and Klette, 2004; Sladoje and Lindblad, 
2009; Cai and Walker, 2010; Suhadolnik et al., 2010) 
since the Freeman chain code (Freeman, 1961) was 

proposed. 
Most of the algorithms of the contour length es-

timator in binary images (Cai and Walker, 2010) are 
based on local metrics, polygonalizations of digital 
curves (maximum-length digital straight segments, 
i.e., DSSs), or minimum length polygons (MLPs). 
Recent work by Lachaud and Provençal (2011) im-
proved the traditional estimator at the execution level. 
However, methods dealing with binary images do not 
take into consideration the sub-pixel information. We 
note a gradient-based method for preciseness 
(Coeurjolly and Klette, 2004), spline interpolation 
methods to calculate the ground relief contours (Fo-
teinopoulos, 2009), and calculation of curve length 
based on B-spline (Suhadolnik et al., 2010). The ad-
vantage of continuity and smoothness in curve ap-
proximation has been shown (Foteinopoulos, 2009; 
Suhadolnik et al., 2010). 

Sladoje and Lindblad (2009) addressed the es-
timation accuracy problem by taking into account the 
gray levels of the pixels at the boundary after digiti-
zation. The basic assumption is that the pixel intensity 
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is proportional to the area of the pixel covered by the 
object’s silhouette. The algorithm manages to calcu-
late the local length of the straight line in a 3×3 region 
with the central pixel located at the object boundary. 

To make length estimation more accurate and 
precise, in this work there is first an estimate of a 
cubic spline curve fit for the boundary points using 
the gray-level information, which is according to 
pixel coverage digitization (Sladoje and Lindblad, 
2009). We then calculate the length of the cubic spline. 
For computational efficiency, we consider only the 
first two items of the Taylor polynomials at the given 
point. Note that this work is different from Fotei-
nopoulos (2009), who used precise coordinates, in-
stead of digital images, as input. The main difference 
between this work and Suhadolnik et al. (2010) is that 
we employ cubic spline interpolation and a local es-
timation algorithm with 4×N configuration (Fig. 1), 
while they used the approximation with a B-spline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2  Pixel coverage digitization 
 

Like Sladoje and Lindblad (2009), in this work 
we assume that there exists a segmentation method 
that approximately provides pixel coverage digitiza-
tion. Pixel coverage digitization means that the gray 
level of each pixel in the image is the ratio of the 
foreground area to the area of the corresponding pixel. 
The formal definitions of pixel coverage digitization 
and n-level quantized pixel coverage digitization are 
given as follows (Sladoje and Lindblad, 2009): 
Definition 1 (Pixel coverage digitization)    For a 
given continuous object Sú2, inscribed into an in-
teger grid with pixels p(i,j), the pixel coverage digiti-
zation of S is 
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where A(X) denotes the area of a set X. 
Definition 2 (n-Level quantized pixel coverage dig-
itization)    For a given continuous object Sú2, in-
scribed into an integer grid with pixels p(i,j), the 
n-level quantized pixel coverage digitization of S is 
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where x denotes the largest integer not greater than x. 

lim ( ) ( ).n
n

D S D S


  

For length estimation based on pixel coverage 
digitization, it is assumed that the boundary of an 
object is locally smooth. However, from the point of 
view of fractal, of which the main idea is a detailed 
pattern repeating itself, the actual length of the curve 
segment can be computed as the estimated length 
multiplied by a constant larger than one. Thus, we 
focus on length estimation of the locally smooth 
curve. 

 
 

3  Length estimation based on cubic spline 
interpolation in a gray-scale image 

3.1  Cubic spline interpolation 

The well-known theory of cubic spline interpo-
lation is simple (Dyer and Dyer, 2001). The  

Fig. 1  Edge length estimation based on cubic spline in-
terpolation with 4×N configuration 
(a) Normal case; (b) Large slope; (c) Vertical tangent line;
(d) Two edges are too close 
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fundamental idea is to fit a piecewise function s over 
n intervals from a set of n+1 points {(xi, yi)|i=1, 2, …, 
n+1}, where xi<xi+1 for i=1, 2, …, n. 
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where si (i=1, 2, …, n) is a third-degree polynomial of 
the form 
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results in end-to-end connection between the spline 
segments. To ensure smoothness, the fact that the 
cubic spline is of class C2 means the first and second 
derivatives of function s at each interior node both 
exist and are continuous, i.e., 
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Since the interval in the application scenario is unit- 
wide (Fig. 1), let h=xi+1−xi. For simplicity, all the 
coefficients in Eq. (1) can be rewritten with yi and yi″ 
as 
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3.2  Length estimation on the unit-wide interval 

Applying the arc length formula 
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a
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of function y=f(x) over the interval [a, b] to si(x), we 
have 
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Thus, t=x−xi, and Eq. (4) can be rewritten using the 
linear approximation expansion of the Taylor series at 
point x=xi as 
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Eqs. (1)–(5) lead to 
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Note that when si(x) is a function of line, the right- 

hand side of Eq. (6) reduces to 2
1 /1 [( ) ] ,i ih y y h   

which is the result of length estimation of the line 
segment. 

The basic application scenario of this work is to 
estimate the arc length on an 8-bit bitmap, which 
allows 256 different intensities to be recorded, typi-
cally on a linear scale. 

Assume that the curve is locally smooth and that 
the image has been pixel coverage digitized. There-
fore, we simply estimate the derivative of y with re-
spect to (xi+xi+1)/2 by difference of Newton’s inter-
polation polynomial: 
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where the subscript ‘i+0.5’ denotes the middle posi-
tion of i and i+1. The second derivative can be derived 
from Eq. (7): 
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Eqs. (6)–(8) and h=1 lead to 
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which takes linear time. Now, using Eq. (9), we can 
estimate the local arc length without explicitly cal-
culating the coefficients of the cubic spline equation. 
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Note that Eq. (6) and other second derivative estima-
tion methods should be used, if the curve is not locally 
smooth. Eq. (9) means that the proposed method es-
timates the arc length as a line segment with slope 

1 1 2
ˆ (6 3 2 ) 6./i i i ik y y y y       Then Eq. (9) can be 

simplified as follows: 
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the grid resolution (note that t=h=1/r). 
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levels of quantized pixel coverage digitization. For 
each yi, the maximum error of its quantized value is 
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 The relative error of 

length estimate il  with n levels of quantized pixel 

coverage digitization is given by 
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The plot of εn (Fig. 3) gives a visual impression 

of the error function. Usually, the four errors of y 

values do not reach 
1

2n
  at the same time, and 

therefore εn is only an upper bound of the relative 
error. The theoretical maximum error ε is 8.680%  
(Fig. 3a) in case of pixel digitalization level 2; how-
ever, the maximum error in the test results is 3.645% 
(Fig. 4). 

 
 

4  Computation of local length 

4.1  Three constraints on local estimation 

Like Sladoje and Lindblad (2009), we use sums 
of (quantized) pixel values in columns to estimate the 

y coordinate. From Eq. (9), we know that the com-
putation needs four neighboring columns of pixels as 
input. All pixels involved in local calculation consti-
tute the active area (Fig. 2c), which is then turned into 
the computation area (Fig. 2d). The core problems are 
to find out how many rows we need in the computa-
tion and to determine whether the derivative exists at 
the estimated position. If the slope of the tangent 
exceeds a certain threshold, which means the slope is 
too large or even does not exist, then the row-wise, 
instead of column-wise, calculation of sums should be 
made. In case of continuous curve segments, the pre-
processing is a bit more complicated.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 shows some examples of different situa-

tions in computation. In the normal case (Fig. 1a), the 
absolute value of the curve slope across the four 
columns is not very large. This results in a small 
number of rows being needed for calculation. As seen 
in Fig. 1b, the curve slope in the 4th column is very 
high. Fig. 1c shows an example having a vertical 
tangent line in the fourth column, which is not fit for 
column-wise computation. However, we can make 
row-wise calculation of forms as shown in Figs. 1b 
and 1c. There are two edges in Fig. 1d, in which we 

Fig. 2  Example process flow for the proposed algorithm of 
arc length estimation by cubic spline (Algorithm 1) 
(a) Input image with estimation position (r, c); (b) Finding the 
active area in each column; (c) The whole active area for 4×N
configuration; (d) The last data matrix 
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cannot easily add up the pixels’ values within each 
column until the other edges are eliminated locally in 
the image. 

To sum up, there are three constraints of local 
estimation: (1) All pixel values are monotonic in each 
column in the active area; (2) All columns in the ac-
tive area have the same monotonicity; (3) The number 
of rows in the active area does not exceed a certain 
threshold. 

4.2  An algorithm for edge length computation 

First locate the edge manually or using other 
edge detection methods. Then test each edge point to 
determine if it satisfies the three constraints in case of 
either row-wise or column-wise calculation. Gener-
ally, at least one type of them can pass all the three 
tests, in which case we can calculate the arc length by 
Algorithm 1. If not, use the algorithm in Sladoje and 
Lindblad (2009) to compute the arc length. 

 
Algorithm 1   Arc length estimation by cubic spline 
for all neighbor columns of point (r, c) (Fig. 2) do  

Find the pixels between rminForCol and  
rmaxForCol (Fig. 2b) 

end for 
Compute minrow and maxrow (Fig. 2c) 
Obtain the local computation area (Fig. 2d) 
Compute all y values and calculate len 

 
Due to computational symmetry, we can use the 

average of the ‘forward’ and ‘backward’ computation 
results of li from Eq. (9): 
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The ‘forward’, ‘backward’, and ‘average’ esti-

mation results are shown in Section 5. In the normal 
case (like in Fig. 1a), we can compute the local arc 
length by Algorithm 1. Here only the pseudo code for 
column-wise calculation of the arc length is shown. In 
case of row-wise calculation, the image should first 
be rotated by 90°. Although the proposed model is not 
symmetric for column-wise and row-wise computa-

tion, it gives good estimation results, as shown later in 
Section 5. We recommend using row-wise calculation 
to estimate the arc length when the estimated slope is 
k>1, as the relative error is smaller when k<1 (Fig. 3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

5  Experiment 

5.1  Elementary functions test 

We estimate the lengths of eight kinds of arc 
segments over four resolutions (10, 20, 50, 100) and 
eight different quantized pixel coverage digitization 
levels (2, 4, 8, 16, 32, 64, 128, 256), which are com-
posed of some elementary functions. We also test the 
proposed method on the corresponding Gaussian and 
average blurred images to simulate real images. In the 
experiments, there are three filter windows, and the σ 
of the Gaussian kernel is 0.5. The eight elementary 
functions and the corresponding estimation intervals 
are listed in Table 1. 

Fig. 3  Relative errors for different quantized pixel cov-
erage digitization levels  
(a) n=2, 4, 8, 16, with the maximum relative errors being 
8.680%, 4.253%, 2.105%, and 1.047%, respectively; (b) 
n=32, 64, 128, 256, with the maximum relative errors being 

0.522%, 0.261%, 0.130%, and 0.065%, respectively 
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All relative errors of the three kinds of calcula-
tion (forward, backward, and average) at grid resolu-
tion 10×10, digitalization level n=∞ are listed in Table 
1. Fig. 4 shows the relative errors of the estimation at 
different quantized pixel coverage digitization levels 
and with different grid resolutions. Figs. 5 and 6 show 
the estimation results on the Gaussian and average 
blurred pixel coverage digitization images, respec-
tively. The test results of estimation on line y=x/2 are 
not presented in these figures, as its errors are rela-
tively small compared with the errors of the other 
seven curves and adding one more curve will reduce 
the readability of the figures. It can be observed from 
Figs. 4–6 that the relative errors converge and fall in a 
certain range as the grid resolution increases. 

5.2  Synthetic images test 

We apply the proposed algorithms on a set of 
synthetic shapes digitized with pixel coverage dig-
itization (Fig. 7), which was presented in Klette et al. 
(1999) and also used by Coeurjolly and Klette (2004), 
Sladoje and Lindblad (2009), and Suhadolnik et al. 
(2010). 

Our test method is almost the same as that used 
by Sladoje and Lindblad (2009). However, for accu-
racy, for each test shape and each of the 20 different 
rotations and positions, we generate the pixel cover-
age digitization image with resolutions in the range of 
[10, 1024]. Fig. 8 presents the evaluation results. 
Although the amplitude of relative errors increases as 
the grid resolution increases, the local maximum of 
the error is lower than that of Sladoje and Lindblad 
(2009)’s algorithm. Unlike Suhadolnik et al. (2010), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Relative errors of the estimated length of curves 
of different elementary functions* 

Relative error (%) 
Function Interval 

Forward Backward Average

y=sin x [0, 2π] −0.002 −0.017 −0.009
24y x   [−1, 1] 0.030 0.030 0.030

y=2x [−2, 0] −0.430 0.454 0.012

y=x/2 [0, 2] 0.000 0.000 0.000

y=log2 x [0.5, 1.5] 0.716 −0.661 0.027

y=x2/2 [0, 1] −1.847 1.952 0.052

y=x3/3 [0, 1] −1.445 1.709 0.132

y=x4/4 [0, 1] −1.057 1.380 0.161
* Grid resolution=10×10 

 

Fig. 4  Relative errors for seven different curve functions
(a) Grid resolution=10, εmax=3.645%; (b) Grid resolution=20, 
εmax=2.505%; (c) Grid resolution=50, εmax=2.200%; (d) Grid 
resolution=100, εmax=2.176% 
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Fig. 5  Relative errors for Gaussian blurred elementary 
function images 
(a) Grid resolution=10, εmax=4.126%; (b) Grid resolution=20, 
εmax=4.330%; (c) Grid resolution=50, εmax=3.014%; (d) Grid 
resolution=100, εmax=3.235% 
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Fig. 6  Relative errors for average blurred elementary 
function images 
(a) Grid resolution=10, εmax=4.126%; (b) Grid resolution=20, 
εmax=4.330%; (c) Grid resolution=50, εmax=3.014%; (d) Grid 
resolution=100, εmax=3.235% 
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in which the relative errors at grid resolutions 1024 
and 2048 are larger than those at grid resolutions 256 
and 512, the local maximum relative error of our 
proposed model is always decreasing with increase of 
the grid resolution. 
 
 
6  Conclusions 

 
A novel local arc length estimator of the curve 

segment in the gray-scale image is presented. The 
method first estimates a cubic spline curve fit for the 
boundary points, and then calculates the approximate 
length of the spline segment between the knots by the 
first two terms of the Taylor series of the spline. The 
local arc length can be computed without explicitly 
knowing the spline polynomial coefficients, but only 
with the sums of y values. We present three local 
constraints on the proposed method. The pseudo code 
 

of the preprocessing and estimation algorithm is 
given, and the method can be implemented easily 
with linear complexity. To facilitate comparison with 
other published results, we test the proposed model 
using the same evaluation method as that used by 
Coeurjolly and Klette (2004) and Sladoje and Lind-
blad (2009). Test results show that our proposed es-
timator outperforms the other digital curve length 
estimators. 
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Fig. 8  Relative errors of the evaluation of B-spline (Su-
hadolnik et al., 2010) (average relative error of grid reso-
lutions 64, 128, 256, 512, 1024, and 2048), locally straight 
line (Sladoje and Lindblad, 2009), and locally cubic spline 
(our proposed model) on the test shapes given in Fig. 7 
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Fig. 7  Test shapes (Klette et al., 1999) 
(a) Vector graphics of the test shapes; (b) Pixel coverage 
digitization of the test shapes 


