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Abstract:    The focal problems of projection include out-of-focus projection images from the projector caused by incomplete 
mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects and enhance the imaging 
quality and clarity of projectors, a novel adaptive projection defocus algorithm is proposed based on multi-scale convolution 
kernel templates. This algorithm applies the improved Sobel-Tenengrad focus evaluation function to calculate the sharpness 
degree of intensity equalization and then constructs multi-scale defocus convolution kernels to remap and render the defocus 
projection image. The resulting projection defocus corrected images can eliminate out-of-focus effects and improve the sharpness 
of uncorrected images. Experiments show that the algorithm works quickly and robustly and that it not only effectively eliminates 
visual artifacts and can run on a self-designed smart projection system in real time but also significantly improves the resolution 
and clarity of the observer’s visual perception. 
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1  Introduction 
 

A projector provides a large flexible projection 
image to satisfy different display sizes; as a result, 
projectors play an important role in the fields of 
education and research as conventional auxiliary 
visualization equipment. As projectors become more 
affordable for the consumer, they have become popular 
in everyday life for personal entertainment. Although 
the current digital light processing (DLP) projector 
has eliminated many of the defects found in the  
liquid-crystal display (LCD) ones, there are still 
problems that need to be addressed. These problems 

primarily involve adaptation to irregular display sur-
faces and involve solutions such as geometric cali-
bration, color compensation, and focal correction 
technologies. Researchers have proposed several 
computer vision algorithms for geometric warping 
and color compensation, but focal correction prob-
lems remain a challenge. Given this background, 
current research focuses primarily on adaptive defo-
cus algorithms for projection images. 
 
 
2  Related work 
 

Projection focal problems have two primary 
causes: the out-of-focus problem in projectors that are 
not completely mechanically focused and the screen- 
door effect produced by projection pixilation. Such 
projection artifacts will disturb the observers’ per-
ceptions and degrade picture clarity. In recent years, 
some progress has been made in related areas. Zhang 
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and Nayar (2006) and Grosse et al. (2010) modeled 
the projector’s defocus using a linear system to de-
velop a temporal defocus analysis method, in order to 
recover depth at each camera pixel by estimating the 
parameters of its projection defocus kernel in the 
frequency domain. Bimber and Emmerling (2006) 
and Nagase et al. (2011) proposed a solution using 
multiple conventional projectors with overlapping 
images, applying motorized adjustments of the lens 
system and the camera feedback to measure the rela-
tive focal value of every projector pixel for different 
focal planes. Brown et al. (2006) applied a precondi-
tioning method to the original image before projec-
tion blurring using a camera to estimate a series of 
spatially varying point-spread functions (PSFs) 
across the projector’s image. The PSFs are then used 
to guide a preprocessing algorithm based on Wiener 
filtering, assuming that the display surface is planar 
and Lambertian. Oyamada and Saito (2009) proposed 
another novel spatially varying PSF-based method, 
which covers the entire projection image and is 
computed by interpolation. By pre-correcting every 
projected sub-image, this pre-correction method re-
duces out-of-focus projection blur without projecting 
the feature image.  

In our study, a novel adaptive projection defocus 
algorithm is proposed based on multi-scale convolu-
tion kernel templates. Compared with previous re-
search, this method works faster and is more robust. 
Our main contributions are listed as follows:  

1. The algorithm does not require multiple pro-
jectors or auxiliary optical calculation equipment to 
construct a complex defocus projection system, which 
makes the projection defocus system much simpler.  

2. This method provides a novel focus-evaluation 
function to obtain a defocus estimation kernel tem-
plate, in preference to applying the optimization it-
eration method, which requires considerable compu-
tational time for the multiple iteration steps necessary 
to ensure accurate defocus results. This improvement 
is very important to satisfy the need for projection 
defocus in real time.  

3. The significant defocus accuracy from ap-
plying this multi-scale convolution defocus compu-
tation and added radiometric optimization algorithm 
can effectively eliminate projection blur and enhance 
the defocus projection effect to adapt to environmental 
textures and satisfy the observer’s visual criterion. 

3  Preprocessing of defocus correction 

3.1  Calibration of the projector-camera system 

The projector-camera system consists of one 
projector and one camera, which are controlled by a 
computer running the projector defocus calibration 
programs. To initialize the system and establish the 
corresponding mapping between the projector space 
and the camera space at the pixel level, the projector- 
camera system requires complete system calibration 
in advance. 

The system initialization primarily involves the 
camera calibration procedure. We use Zhang (2000)’s 
camera calibration method to rectify the radial and 
tangential distortion of a mounted camera using its 
intrinsic parameters. The calibrated camera can cap-
ture the projection display environment and radio-
metric information in real time. 

Several popular calibration algorithms have been 
used in research on projection geometric correction 
(Raskar et al., 1998; Brown et al., 2005; Bhasker et 
al., 2007; Xie et al., 2007; Yang et al., 2007). In this 
work, to establish the corresponding mapping from 
the projector space to the camera space at the pixel 
level, we propose a binary encoded structured light 
method combined with a discrete mapping algorithm. 
According to defocus function model estimation, 
Gaussian blobs of equal size are rendered as a feature 
pattern, and used to create binary encoded structured 
light. The discrete mapping algorithm can then be 
used to compute the corresponding per-pixel mapping. 
Details about this process can be found in Zhu et al. 
(2011a). 

3.2  Radiometric compensation optimization 

For disturbances that come from geometric dis-
tortion and radiometric errors, images captured by a 
projector-camera system without any processing 
cannot be used directly in projection defocus correc-
tion. The method described in Section 3.1 can com-
plete the geometric calibration simply and effectively 
and, for the second problem, a radiometric compen-
sation algorithm is proposed to optimize geometric 
corrected projection images. 

Certain everyday environments, such as curtains 
with a regular texture or walls painted a certain color, 
can also be used as projection display surfaces, but the 
material, decorative pattern, and even natural light 
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will disturb the radiometry and intensity of the initial 
projection image. Several recent studies (Nayar et al., 
2003; Grossberg et al., 2004; Ashdown et al., 2006; 
Wang et al., 2007; Bimber et al., 2008) focused on 
this problem. In this study, the radiometric compen-
sation algorithm based on the improved Lambertian 
reflection model (Zhu et al., 2011a; 2011b; 2012) is 
used to correct the radiometry and the intensity of the 
projection image. 

The Lambertian reflection model is an ideal es-
timation for a non-smooth reflection surface. In this 
model, it is assumed that the radiometry and intensity 
can be reflected completely and equally. The param-
eterization model depends on three key factors: inci-
dent light, RI; the unit vector from incident light, i; 
and the normal vector to the reflection surface, n. α is 
the angle between vectors i and n. The standard 
Lambertian radiometric reflection can be parameter-
ized as 
 

S I I I( ) cos cos .R R R R         i n i n    (1) 
 

To improve the standard Lambertian reflection 
model, two parameters T and RE are added to describe 
the material texture and environmental light, obtained 
by an environment radiometric reconstruction method. 
Details of the environment radiometric reconstruction 
method can be found in Zhu et al. (2011a; 2011b; 
2012). The incident radiometric light can thus be 
computed as follows: 

 

E
I .

cos

R R T
R

T 
 




                         (2) 

 

In projection display environments, RI is a pro-
jection beam from the projector light source, and the 
surface radiometric reflection R can be calculated by 
extracting the red, green, and blue components from a 
captured RGB image. As a result of a previous anal-
ysis, the improved Lambertian reflection model is 
constructed to calculate the radiometric compensation 
data. In Eq. (2), substitute R with the original projec-
tion image, I(R, G, B), to obtain the ideal compensation 
projection data C (red, green, and blue components 
are calculated separately). Applying the ideal com-
pensation projection data C to the initial projection 
defocus image, the final radiometric compensated 
projection defocus image is obtained (in the ideal case, 
α can be set as 0 and thus cos α=1 for experiments): 

E .
cos

I R T
C

T 
 




 
                         

(3) 

 
 
4  Projection defocus based on multi-scale 
kernels 

4.1  Deblur kernel model estimation 

The defocus image, which is a type of degraded 
image based on the original projection image, can be 
described as a visual blur artifact and is affected by 
several disturbance factors. In recent studies, most 
researchers have used classical image restoration 
methods to solve the projection defocus problem. 
Analyzed at the per-pixel level, the projector system 
throws one pixel from the electronic imaging space to 
an out-of-focus blur area on the display surface, which 
is processed by some linear or nonlinear blur func-
tions. Considered at the whole-image level, the blur 
effect can be described as the convolution computed 
by blur kernels (Fig. 1) (Zhang and Nayar, 2006). 
Therefore, the essence of solving the defocus problem 
lies in finding the deblur kernel or defocus kernel to 
construct the defocus function model. 

 
 
 
 
 
 
 
 
 
 
 

 
 

In ideal cases, the projection blur model can be 
parameterized to the common convolution equation 
as follows (Iorig is the original projection image, and   
is convolution computation): 
 

blur orig .I I h 
                        

(4) 

 
According to the projection imaging theory of 

the DLP projector and from experiments on linear and 
nonlinear parameterization display surfaces for popu-
lar DLP projectors, the projection blur model can be 

Fig. 1  Projection blur image 
The original feature in the colored frame of (a) is projected on 
the display surface, and (b) is the corresponding blurred feature

(a)         (b) 
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simplified to the unique Gaussian filter kernel, h, 
which can be applied to the entire projection image 
for deconvolution: 

 

2 2

2 2

1
( , ) exp .

2π 2

x y
h x y  

 
  

            
(5) 

 

According to Eq. (1) and analysis of deconvolu-
tion computation, the estimated blur kernel can be 
used to construct the projection deblur function,  
Fdefocus (Eq. (6)). If Fdefocus is applied to the original 
image in the projector imaging space, the observer 
can see the projection image more clearly and sharply 
in the projection display environment. 

 

defocus defocus orig( ).I F I
                   

(6) 

4.2  Improved focus evaluation function 

First, as Fig. 2a shows, the original feature image 
is equally divided into separated sub-image areas (the 
‘sub-image area’ means the image pixels within each 
white rectangle frame as indicated). Here, the 25×25 
dense ‘dot’ feature patterns are applied as centers of 
each sub-image area and the size of one sub-image 
area is 21×21 pixels. Then these sub-images are re-
grouped and indexed as an original feature sub-image 
cluster. Second, the captured projection image (Fig. 
2b) is processed by applying the feature recognition 
algorithm (as in the method in Section 3.1) to obtain 
the exact coordination position of each ‘dot’ feature 
pattern; according to the pixel corresponding map-
ping between the projector and the camera from Sec-
tion 3.1, we can finally obtain the corresponding 
sub-image cluster in the captured projection image. 
To analyze the computation data, an improved focus 
evaluation algorithm is applied that estimates the 
sharpness of each sub-image area. 

 
 
 
 
 
 
 
 
 
 
 

At present, popular focus evaluation methods 
include the gray-scale difference method, Laplacian 
operator method, and Sobel-Tenengrad (ST) method. 
According to these experiments, the first two methods 
are more efficient than the third one, but the ST me-
thod has the best accuracy and robustness. So, for the 
projection defocus problem, the ST method is used, 
but with some improvements to increase its speed. 

The basic simple Sobel operator is the 3×3 ker-
nel format, but considering the throw ratio of popular 
projectors, 5×5 (Fig. 3) and 7×7 extended Sobel op-
erators must be constructed to analyze sub-image 
clusters in the spatial domain. 

 
 
 
 
 
 
 
 
 
 
First, the gradient value of every pixel in each 

sub-image is computed using the extended Sobel 
operator. Then, Tx and Ty are set, indicating the results 
in the horizontal and vertical directions, respectively. 
In the spatial domain of the sub-image, the computa-
tion of Tx and Ty can be expressed as a convolution 
filter computation with the Sobel operator: 
 

sub ( , ) ,x xT I x y S                          (7) 

sub ( , ) .y yT I x y S 
                        

(8) 

 
Second, the classical Tenengrad focus evaluation 

function is improved to compute the degree of 
sharpness of the sub-image cluster. As Eq. (9) shows, 
the classical Tenengrad function requires a large 
amount of computation, so it has the highest evalua-
tion accuracy but is less efficient. In most practical 
calculations, Eq. (9) can be transformed to an ap-
proximate format given as Eq. (10).  
 

1 1
2 2

ST
0 0

,
M N

x y
x y

F T T
 

 

 
                     

(9) 

 
1 1

ST-abs
0 0

.
M N

x y
x y

F T T
 

 

 
                

  (10) 

Fig. 3  The 5×5 X-direction (a) and Y-direction (b) Sobel 
operator 

(a) (b) 

Fig. 2  Recognition and computation of corresponding sub-
image clusters 
(a) Original encoded feature pattern image; (b) Captured en-
coded feature pattern image 

(a) (b) 
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Experimentally, the evaluation result of Eq. (9) 
is equivalent to that of Eq. (10). To analyze the results 
in the X and Y directions, in our study Eq. (10) is 
divided into separate parts and reconstructed as two 
new evaluation functions: 
 

1 1

ST-
0 0

,
M N

x x
x y

F T
 

 

                        (11) 

1 1

ST-
0 0

.
M N

y y
x y

F T
 

 

                        (12) 

 

Then, compared to the classical ST function, the 
captured projection feature image is set to be the 
sample data, and the evaluation results of the new 
X/Y-direction ST functions have very similar curves 
(Fig. 4). In other words, we can obtain very similar 
indices of the peak values from these three Tenengrad 
focus evaluation functions. According to previous 
analysis, the X/Y-direction ST focus function yields a 
very similar sharpness evaluation value but is much 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

faster. In the experiments, the new evaluation func-
tion takes only 1/15 to 1/20 of the computational time 
of the original function.  

As shown in Fig. 5, the improved ST function is 
used to compute each mapping pixel area of the 
original feature sub-image (Fig. 2). The area with the 
highest sharpness is then assigned as the defocus 
reference template, Iref. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Luminance equalization 

Because of the hardware limitation of the pro-
jector imaging system, the projection pixels in the 
center area have higher lumen values than those at the 
boundaries. Such nonuniform projection lumens spread 
the effects of defocus function computation. Based on 
the improved ST focus evaluation function from 
Section 4.2, a luminance equalization method is 
proposed to preprocess the captured projection im-
ages and optimize the defocus algorithm using the 
following procedure: 

Step 1: The focus reference template is trans-
formed by applying a fast Fourier transform (FFT): 

 

FFT-ref refFFT( ).I I
                   

(13) 

 
Step 2: According to the mathematical theory of 

FFT, the direct current portion of the image equals the 
intensity value at the original position, and when the 
original captured projection image is transformed from 
the spatial domain to the frequency domain, the fre-
quency spectrum information in the direct current part 
does not change. For a more detailed explanation, see 
the Gaussian filter function (Eq. (14)). When u and v 
equal zero, the location is at the original position, and 

Fig. 5  Recognized ‘dot’ feature of defocus reference tem-
plate Iref, indicated by a white cross within the rectangle 
frame 

(a) 

(b) 

Fig. 4  Analysis of the improved Sobel-Tenengrad evalua-
tion function 
(a) Classical Sobel-Tenengrad function vs. X-direction Sobel-
Tenengrad function; (b) Classical Sobel-Tenengrad function
vs. Y-direction Sobel-Tenengrad function 
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F(0, 0) equals the average intensity value of the 
original image (Eq. (15)). Then the intensity value, 
IFFT-ref(0, 0), as the direct current part of IFFT-ref, is 
extracted and saved for the following computation 
(Eq. (16)). 
 

1 1

0 0

1
( , ) ( , )exp j2π ,

M N

x y

ux vy
F u v f x y

MN M N

 

 

      
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(14) 
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1 1

FFT-ref ref
0 0

1
(0,0) ( , ).

M N

x y

I I x y
MN

 

 
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Step 3: The FFT computation is applied over 

each image area, In, in the sub-image cluster, and the 
frequency sub-image cluster, IFFT-n, is obtained. In the 
frequency domain, all the original position intensity 
values IFFT-n(0, 0) are replaced by IFFT-ref(0, 0) from 
step 2, and then an inverse Fourier transform is ap-
plied to each of them, returning to the spatial domain: 

 

FFT-invFFT( ).n nI ' I                    (17)  

 
The new sub-image cluster in the spatial domain 

is In', which is then reconstructed as the per-pixel 
correspondence mapping from Section 3.1. The final 
remapped image can then be rendered as a luminance- 
equalized projection image (Fig. 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

4.4  Multi-scale Gaussian convolution kernel tem-
plate estimation 

First, the focus reference image Iref is set as the 
basis of the convolution reference template, and the 
multi-scale Gaussian filter convolution is applied to 
process it. In the Gaussian filter convolution Eq. (2), 
the sigma value is adjusted to equal 0.5, 1, 1.5, 2, 2.5, 
3, 3.5, and 4, so the convolution computation pro-
duces eight different Gaussian filter images, which 
can then be set as multi-scale Gaussian convolution 
kernel templates (Fig. 7). 

Then the sharpness degree of each convolution 
kernel template is computed based on the improved 
ST focus evaluation function. The same method is 
applied to every sub-image area and the results 
compared to the kernel templates. The sharpness 
degree best matched with the sub-image area is cho-
sen and assigned the same index used for the 
sub-image cluster. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Luminance equalization 
(a) Original captured image; (b) Luminance-equalized cap-
tured image 

(a) (b) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig. 7  Multi-scale Gaussian convolution kernel templates: (a) sigma=0.5; (b) sigma=1; (c) sigma=1.5; (d) sigma=2;
(e) sigma=2.5; (f) sigma=3; (g) sigma=3.5; (h) sigma=4 
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Finally, the sub-image cluster is defocused and 
regrouped. Then, the classical Wiener filter function 
is chosen as in the deconvolution method and Eq. (18) 
is applied to transform the original projection image 
to the frequency domain. 

 

freq ( , ) ( , ) ( , ),I u v I u v H u v                 (18) 

freq
Wiener 2

( , ) ( , )
.

( , ) 1 / SNR

H' u v I u v
I

H u v





             (19) 

 
In Eq. (18), the Gaussian filter kernel is set as 

H(u, v), and the sigma value is replaced by the pre-
vious eight groups of estimation values. The SNR in 
Eq. (19) means the signal-to-noise ratio.  

For regrouping and rendering a defocus projec-
tion image, a multi-scale defocus image template 
method is proposed. Some previous regrouping me-
thods choose the corresponding sigma value of each 
sub-image to do a separate deconvolution, and then 
regroup and index the deconvolved sub-images.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, when the feature patterns are large (more 
than 1000), these methods devote much time to dis-
crete computations and repeat graphics rendering for 
each sub-image area. For this study, the previous 
regrouping method is simplified and improved to 
work with real-time computational resources. First, a 
deconvolution computation using the Wiener filter 
method with eight groups of estimated sigma values is 
applied to the entire original projection image. After 
deconvolution computation, eight whole Wiener filter 
images are obtained (Fig. 8) and saved as remapping 
defocus image templates in the frame buffer of the 
graphics card. Then, each pixel is traversed repeat-
edly for each sub-image area of the original projection 
image, replacing the pixel value by the same position 
in the corresponding defocus image templates. For 
optimization to boundary rendering, the bilinear in-
terpolation-rendering algorithm is applied to smooth 
the computation of the boundary pixels. The final 
regrouped and rendered new image is the ‘projection 
defocus compensation image’ (Fig. 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

Fig. 8  Multi-scale defocus projec-
tion image templates: (a) sigma=0.5; 
(b) sigma=1; (c) sigma=1.5; (d) sig-
ma=2; (e) sigma=2.5; (f) sigma=3; 
(g) sigma=3.5; (h) sigma=4 

(b) (c) 

(d) (e) (f) 

(g) (h)
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5  Experiments and analysis 
 

Fig. 10 shows a smart adaptive defocus projec-
tion system designed and implemented for this study 
(Zhu et al., 2011a; 2011b). The system prototype 
consists of a Lenovo T151 DLP projector and a Lo-
gitech C905 camera for projection and capture, and 
uses a biaxial digital tilt sensor attached to the side of 
the projector to feed back the real-time projection 
positions. All the programs are running on a laptop, 
 
 
 
 
 
 
 
 
 
 
 
 
 

which is connected to all the instruments. The key 
calibration and communication algorithms are coded 
using Matlab and C++, and the graphics texture 
mapping is rendered using OpenGL libraries. 

The main algorithm flow chart of this work is 
shown in Fig. 11. First, the projection system is ini-
tialized and geometrically calibrated using a discrete 
mapping algorithm. Then, a radiometric compensa-
tion method based on an improved Lambertian re-
flection model is used to eliminate the color texture 
and environmental radiometric disturbance. Second, 
the improved ST focus evaluation function is pro-
posed to calculate the sharpness degree and equalize 
the projection luminance. Based on sharpness degree 
computation, the multi-scale defocus estimation 
kernels are constructed to render multi-scale defocus 
projection images, which are then used to remap and 
render the projection defocus compensated images. 
The final produced projection images are projected 
directly from the computer graphics texture mapping 
space. 

 
 

 
 
 
 
 
 

  
  
 

 

 

 

 

 

 

 

 

 

(a)

(b)

Fig. 9  Projection defocus compensation image computation
(a) Original projection image; (b) Projection defocus com-
pensation image 

Fig. 10  Prototype of the intelligent projection system 

Projector Camera Computer Tilt sensor

Fig. 11  Flow chart of the projection defocus compensation algorithm, which has four key procedures: system cali-
bration, radiometric optimization, projection defocus computation, and corrected defocus image rendering 
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For the experiments, the projection display en-
vironment is a planar vertical wall in an office room, 
and the projected surface is perpendicular to the axis 
of projection. The position of the ‘hardware focused’ 
projector is then adjusted to simulate the ‘projection 
defocus effect’. The projected test images are chosen 
with resolution of 1024×768, the same as the maxi-
mum projection resolution of the projector used in 
this study. 

In Experiment 1, when the original projection 
image is projected directly on the surface (Fig. 12a), 
the blurred image and color cast vision artifacts are 
obvious. After the proposed defocus algorithm is 
applied (Fig. 12b), the perception resolution of the 
projection image is much enhanced.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As Fig. 13 shows, the same defocus effects can 

be observed in Experiment 2.  
To evaluate the defocus improvement of the al-

gorithm, we obtain the defocus evaluation results for 
Experiment 2. The improvement of the projection 
image defocus effect is a sort of subjective visual 

perception of the human observer, so it is difficult to 
adapt a common calculation criterion for projection 
defocus algorithms. To evaluate the algorithm de-
scribed here, we apply both subjective and objective 
methods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For subjective assessment, the Double Stimulus 

Continuous Quality Scale (DSCQS) method set in 
ITU-R BT.500 is applied. The DSCQS method, which 
is particularly effective when it is not possible to 
present the full range of quality conditions, has been 
widely used for assessing the video quality of televi-
sion broadcasts. It can simultaneously assess the dif-
ference in quality between a reference video and an 
assessment video (ITU, 2002). We invite 10 people of 
different knowledge backgrounds as observers to 
judge the visual perception of the defocus effect. A 
pair of videos comprising the uncorrected projection 
image sequence and the defocus projection image 
sequence is projected twice on the display surface. 
The observers are not told which is the defocus cor-
rected projection. As Fig. 14 shows, the assessments 
of the observers are recorded the second time the 
videos (Videos C and D) are presented (NTT, 1999). 

The assessment score system is based on cate-
gories of the five-grade quality scale: Excellent, Good, 
Fair, Poor, Bad. The evaluations are normalized to  
the score range 0–100 (Bad, 0; Excellent, 100). By 

Fig. 12  Results of Experiment 1 
In local area analyses about corrected projection image (b), 
details of the hair of the lion and the beard of the tiger can be 
observed, and the sharpness and color of the whole picture are 
similar to those of the original image (a) 

(a) 

(b) 

Fig. 13  Results of Experiment 2 
The magnification of various regions of the captured ex-
perimental images shows that the detailed textures in the eye 
and hair regions (top row) of the image are difficult to dis-
tinguish. From the captured defocused projection image, an 
observer can detect clear textures in the eyebrows and eye-
lashes, and the hair shows many more smooth lines (bottom 
row) 
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calculating the scores from observers for separated 
image sequence videos, we obtain an average as-
sessment of uncorrected defocus projection and of 
corrected defocus projection (Table 1).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The average score of uncorrected projection is 

25.0 and that of defocus corrected projection is 72.5, 
which shows a remarkable improvement from Poor to 
almost Good grade visual perception. 

For an objective evaluation of defocus projection 
quality, we choose the classical image blur evaluation 
method to compute the blur degree of the uncorrected 
projection image and of the defocus projection image, 
and then calculate the difference between them. We 
name the original projection image ‘error-Focus I’ 
and the corrected one ‘error-Focus II’.  

Table 2 shows that, using the algorithm proposed 
here we can obtain 8% defocus improvement for the 
whole image area. More than that, for interesting and 
more detailed areas, there is an 8.02% improvement at 
the hair location and a 16.94% improvement at the 
eye location, confirming significant defocus accuracy. 
In contrast, in Brown et al. (2006) and Ladha et al.  

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(2011), who used a similar single camera-projector 
defocus system, only a defocus effect of less than 
13% can be obtained. These results show that our 
defocus algorithm achieves better defocus correction. 
With respect to algorithm efficiency, the computa-
tional time for system calibration is approximately 
5–10 s, and the defocus correction for one frame costs 
approximately 0.1–0.2 s, which satisfies everyday 
needs for a presentation display speed. 

According to the accuracy and efficiency 
achieved by our projection defocus algorithm, the 
defocus effects and sharpness improvement satisfy an 
observer’s visual observation criterion almost in real 
time. 
 
 
6  Conclusions and future research 
 

We propose a defocus algorithm to deal with 
projection images based on multi-scale convolution 
kernel templates. The algorithm runs on a self- 
designed smart projection system. Based on geomet-
ric calibration and radiometric compensation opti-
mization for projection images, the main projection 
defocus correction algorithm applies a novel modified 
ST focus evaluation function to calculate the degree 
of sharpness for intensity equalization, and constructs 
multi-scale defocus convolution kernels to remap and 
render the defocus projection images. The final pro-
jection defocus compensated images can eliminate 
out-of-focus defects and improve the sharpness of 

Table 1  Assessment scores given by 10 observes using the 
DSCQS method 

Quality grade 
Observer ID Uncorrected pro-

jection Video D 
Defocus corrected 
projection Video C

1 Poor Good 
2 Poor Fair 
3 Bad Good 
4 Poor Good 
5 Fair Excellent 
6 Poor Good 
7 Poor Good 
8 Bad Fair 
9 Poor Good 
10 Fair Good 

Average improvement 25.0 72.5 

Table 2  Defocus projection improvement of Experiment 2

Area 
Error-Focus I

(pixel) 
Error-Focus II 

(pixel) 
Improvement

Whole image 0.8289 0.7626 8.00% 
Hair 6.3185 5.8118 8.02% 
Eye 1.6819 1.3971 16.94% 

 

Fig. 14  Schematic of the Double Stimulus Continuous Quality Scale (DSCQS) method  
Videos A and D: uncorrected projection image sequence; Videos B and C: defocus corrected projection image sequence 
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uncorrected images. Experiments show that the 
resolution and clarity of the observer’s visual per-
ception are significantly improved. 

There are still some problems to be considered. 
The current algorithm takes approximately 0.1–0.2 s 
for one frame, satisfying the requirements for com-
mon real-time presentation displays. For super-high- 
resolution video play, however, the frame rate must be 
increased to 24 frames/s or higher. Future research 
work will focus primarily on speeding up the algo-
rithm while retaining high correction accuracy. Hope- 
fully, significant progress can be made by researching 
hardware acceleration technology, such as a GPU 
computing method based on CUDA architecture. 
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