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Abstract:    The rapid growth of computational power demand from scientific, business, and Web applications has led to the 
emergence of cloud-oriented data centers. These centers use pay-as-you-go execution environments that scale transparently to the 
user. Load prediction is a significant cost-optimal resource allocation and energy saving approach for a cloud computing envi-
ronment. Traditional linear or nonlinear prediction models that forecast future load directly from historical information appear less 
effective. Load classification before prediction is necessary to improve prediction accuracy. In this paper, a novel approach is 
proposed to forecast the future load for cloud-oriented data centers. First, a hidden Markov model (HMM) based data clustering 
method is adopted to classify the cloud load. The Bayesian information criterion and Akaike information criterion are employed to 
automatically determine the optimal HMM model size and cluster numbers. Trained HMMs are then used to identify the most 
appropriate cluster that possesses the maximum likelihood for current load. With the data from this cluster, a genetic algorithm 
optimized Elman network is used to forecast future load. Experimental results show that our algorithm outperforms other ap-
proaches reported in previous works. 
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1  Introduction 
 

Demand for high-performance computing infra-
structures from modern resource intensive enterprises 
and scientific applications has been growing recently. 
Server-side computing and the exploding popularity 
of Internet services have rapidly made large-scale 
data centers an integral part of the Internet fabric 
(Marston et al., 2011). Cloud computing, which has 
been introduced recently, is a paradigm that stream-
lines on-demand provisioning of software, hardware, 
and data services. It also provides end users with 
flexible and scalable services that are accessible 
through the Internet (Armbrust et al., 2009). It allows 

organizations to outsource their computation needs to 
the cloud and eliminates the need for these organiza-
tions to maintain their own computing infrastructure 
(Vaquero et al., 2009). To ensure high scalability, 
flexibility, and cost effectiveness, cloud platforms 
need to be able to quickly plan and provide resources, 
which will ensure that supporting infrastructures can 
closely match the needs of various applications. 
Cloud platforms require mechanisms to continuously 
characterize and predict their loads. 

Load prediction is a crucial issue for efficient 
resource utilization in a dynamic cloud computing 
environment. Based on future load prediction and an 
estimate of the future performance of each virtual 
machine (VM), management middleware in cloud can 
allocate enough resources for running services while 
avoiding costly over provisioning. Hence, the prob-
lem for elastic resource management involves  
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deciding when, how much, and whether to scale VM 
up or down. Scaling can be done horizontally by in-
creasing or decreasing the number of allocated VMs. 
Scaling can also be performed vertically by changing 
the hardware configuration for the CPU, memory, and 
input/output, among others, of already running VMs. 
Given the scale of the current and future loads in 
cloud data centers and services, autonomic manage-
ment can be implemented for clouds (Calheiros et al., 
2011). Effective load prediction will help adminis-
trators take appropriate actions in preventing the 
system suffering from traffic surge or the Slashdot 
effect (Bauer and Adams, 2012), which is caused by 
high load. 

In the past few years, some studies have been 
devoted to load prediction in cloud computing envi-
ronments. Caron et al. (2010) presented a Knuth- 
Morris-Pratt (KMP) based string matching algorithm 
to forecast the on-demand cloud computing resource 
workload. KMP uses a set of historical data to identify 
similar load patterns in a current window for records 
that occurred in the past. The algorithm predicts cloud 
workload by interpolating what follows after the 
identified patterns from the historical data. Duy et al. 
(2010) proposed a strategy for energy conservation in 
cloud infrastructures using a neural predictor to 
forecast future load. They attempted to reduce the 
number of running servers to minimize energy con-
sumption while ensuring that the service level 
agreement (SLA) requirements are met by using ac-
curate load prediction. Saripalli et al. (2011) used a 
load tracker function to obtain a representative view 
of the cloud workload trend from measured raw data. 
They used cubic spline interpolation to predict loads 
at any given timestamp (in the future). This algorithm 
can predict future resource loads and detect hot spots 
under real-time constraints. Islam et al. (2012) pre-
sented empirical prediction models for adaptive re-
source prediction in a cloud environment and devel-
oped load prediction based resource measurement and 
provisioning strategies. They employed a neural 
network and linear regression model to predict up-
coming resource demands. Their method offers more 
adaptive resource management for applications that 
can be achieved through on-demand resource alloca-
tion in cloud computing. Khan et al. (2012) proposed 
a new means of characterizing correlated workload 
patterns across servers resulting from the dependen-

cies of applications that run on these servers. They 
treated server performance data samples as multiple 
time series and introduced a co-clustering algorithm 
to identify server groups and time periods when cer-
tain workload patterns appear in a group. A hidden 
Markov model (HMM) was used to explore temporal 
correlations in workload pattern changes. Finally, 
server behavior could be predicted based on the server 
groups. The proposed method takes into account the 
load characteristics in cloud computing and provides 
a better prediction performance. 

We argue that the key to accurate load prediction 
in cloud computing is proper modeling of the rela-
tionship between historic data and future values, and a 
proper understanding of cloud computing backend 
workloads. Benson et al. (2010), Mishra et al. (2010), 
Di et al. (2012a), and Reiss et al. (2012) analyzed the 
characteristics of cloud load and studied the differ-
ences between the cloud data center and other Grid or 
high performance computing (HPC) systems from the 
perspectives of resource utilization, resource requests, 
and job execution time, among others. On the basis of 
their work, we summarized the main differences 
between cloud computing and other Grid or HPC 
systems: (1) Most jobs in the cloud are small, and they 
are generally slighter than those in Grid or HPC; (2) 
The execution time of cloud jobs is shorter than that 
of Grid or HPC jobs; (3) Load in clouds has higher 
noise and changes frequently in shorter periods, 
whereas the host load of Grid or HPC systems is more 
stable during relatively long periods. These un-
avoidable dynamic load changes increase barriers to 
better prediction performance in a cloud computing 
environment. 

The motivation for our work is to develop an 
approach that can discover load patterns automati-
cally, classify the load objectively, and forecast future 
load accurately. We take the perspective of a cloud 
service provider who hosts multiple sites with vast 
amounts of virtualized servers, such as the Amazon 
Elastic Compute Cloud (EC2). We focus on short- 
term load prediction for real-time cloud computing 
resource allocation and management. Based on short- 
term prediction of future load (Bennani and Menasce, 
2005; Ardagna et al., 2012), the cloud administrator 
will be able to implement appropriate measures at a 
more fine-grain time scale (e.g., from 5 to 10 min). As 
shown in Fig. 1, we propose a hybrid approach to 
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forecast future load in cloud computing. A hybrid 
model has both linear and nonlinear modeling abili-
ties and thus can be a good alternative for predicting 
time series data. Combining various models can 
capture different aspects of underlying patterns 
(Zhang, 2003). Recently, researchers proved that 
hybrid approaches integrating classification methods 
achieve greater prediction accuracy than do single 
models (Yu et al., 2008; Hassan et al., 2012; Khashei 
et al., 2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Our hybrid approach is composed of three major 
phases: load subsequence extraction, load subse-
quence clustering, and future load prediction. First, 
we adopt the fixed size overlapping sliding window 
(FSOSW) (Arasu and Manku, 2004) to extract load 
subsequences from historical time series data. Second, 
we employ HMM based unsupervised data clustering 
to identify natural groupings of cloud computing load 
data from a large set of historical traces to concisely 
represent the system behavior. Many clustering tech-
niques, such as K-means, C-means, and the fuzzy 
theory based clustering method (Kaur et al., 2013), 
have been studied by researchers in various areas, 
such as statistics, pattern recognition, and machine 
learning. However, most existing clustering ap-
proaches were assumed to have a pre-specified 
number of clusters. This assumption is not true for 
every situation, because we have insufficient know-
ledge about data structures from different domains 
before clustering. Furthermore, different clusters in a 
partition should represent different dynamic patterns 
and structures. The predetermined clustering partition 
is not selected objectively. Therefore, an objective 

criterion should be employed to partition data into 
homogeneous groups, and models that can best ex-
plain the phenomena associated within each group 
should be derived. 

HMM is an effective tool for modeling time 
varying processes and capturing dynamic properties 
of temporal data (Rabiner, 1989). It also adopts 
probability measures to model sequential data repre-
sented by observation sequences. HMM has been 
extensively used in various applications, such as 
speech signal recognition (Liang et al., 2007), finance 
(Zhang, 2004; Hassan et al., 2007), DNA sequence 
analysis (Andersson et al., 2012), and time series data 
pattern discovery and prediction (Niu et al., 2009; 
Wang et al., 2011). In the present study, the Bayesian 
information criterion (BIC) (Weakliem, 1999) and 
Akaike information criterion (AIC) (Bozdogan, 1987) 
are adopted to find the optimal HMM model size and 
cluster partition. BIC and AIC are widely used model 
selection criteria to find the best fitting model to the 
data (Burnham and Anderson, 2004). They select the 
optimal model that can minimize negative likelihood 
penalized by the number of parameters. Similar data 
falls in the same cluster after data clustering. Thus, 
the current load data will have a likelihood value 
produced by HMMs in each cluster. From these 
clusters, the historical data that has the maximum 
HMM likelihood value and the next time interval data 
will be chosen for prediction model training and fu-
ture load forecasting. 

Finally, a genetic algorithm (GA) optimized 
Elman network is used to forecast required load in the 
data during the next time period. The Elman network 
is a recurrent neural network, which is used to predict 
nonlinear and dynamic time series data in various 
areas (e.g., traffic flow, electric power load, weather, 
and cloud computing host load). These networks are 
self-studying, data driven, self-organizing, and self- 
adaptive, and they possess associative memory. Arti-
ficial neural networks can learn from patterns and 
capture hidden functional relationships in given data, 
even if the relationships are unknown or difficult to 
identify. Consequently, unseen inputs can be fed to 
the trained networks to generate appropriate outputs 
(Palit and Popovic, 2005; Hirose, 2012). However, 
the Elman network, which learns the network by 
modifying the weight and threshold values, starts at 
the output layer, and then moves backward through 

Fig. 1  Block diagram of the proposed prediction process
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the hidden layers. By applying a gradient method, the 
Elman network finds better weights and thresholds, 
but it is prone to local minimum problems and slow, 
with unsteady convergence during its training pro-
cedure. To overcome these weaknesses, we adopt a 
GA to optimize the weights and thresholds. GA is a 
stochastic general search method, which performs a 
global search and can effectively explore large search 
spaces. GA can help discover better network connec-
tion weights and parameters, thus improving the pre-
diction accuracy of the Elman network. We name our 
model HGE, and experimental results show that the 
proposed method can perform more accurate load 
prediction in a cloud computing environment com-
pared with other models. 
 
 

2  An unsupervised offline load clustering 
approach 
 

In this section, we introduce the proposed un-
supervised offline load clustering method. In Section 
2.1, we describe the fixed size overlapping sliding 
window (FSOSW) based load subsequence extraction 
technique and the dual time scale new arrival load 
time series data updating method. The HMM based 
unsupervised load subsequence clustering method is 
detailed in Section 2.2. 

2.1  FSOSW based load subsequence extraction 

Given an L cloud computing load time series 
data, we use FSOSW to divide the total length of L 
historical load into n subsequences of equal length d. 
We then obtain n d-dimensional data points xi (i=1, 
2, …, n, n=L/d) for clustering; i.e., we will treat 
d-length load subsequences as d-dimensional data 
points when they are classified into different clusters 
by using HMM. Fig. 2 shows the whole load subse-
quence extraction process. 

The sliding window size is equal to d+h, where h 
is the length of the load subsequence that needs to be 
predicted; i.e., d-dimensional data point xi and their 
next h-dimensional data points are extracted simul-
taneously to establish a rational connection between 
current loads and future loads. The d-dimensional and 
h-dimensional data points, which represent d-length 
and h-length load subsequences respectively, are the 
training and testing data for the Elman network re-

spectively, which can help logically build the network 
structure. In accordance with the structure of the El-
man network, the length of subsequence d in our 
study is an integer multiple of the prediction length h 
(i.e., d=γh). The number of input layer nodes is d, and 
h is the number of output layer nodes in the Elman 
network. Hence, d and h have a significant impact on 
the prediction performance of the Elman network. 
Coefficient γ cannot be determined by existing ex-
perience or formula, so it will be studied in later 
experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
We make use of d-dimensional data point xi in 

the same fuzzy cluster and the next h-dimensional 
data as the training data to build the GA-Elman net-
work predictors with the best fitness. Length-d sub-
sequences will be placed into different clusters by 
using the HMM clustering algorithm, which will be 
based on their load characteristics. When the new 
load arrives, the newcomers will be divided into small 
load subsequences with a length of d by using 
FSOSW. Dual time scales are available for data up-
dating. At a short time scale, for less than 6 or 12 
hours, the new data with the maximum HMM like-
lihood values is placed into existing clusters. At a 
long time scale, for more than 12 hours, we re-train 
the whole historical data to obtain new HMMs and 
clusters. In this way, the proposed method can adapt 
to a dynamic load in real time by updating and 
re-training with the latest data. 

2.2  HMM based unsupervised load subsequence 
clustering method 

Clustering involves grouping data patterns into 
clusters so that patterns within a cluster bear strong 
similarity to one another but are very dissimilar to 
those in other clusters. These clusters are central to 

Fig. 2  The fixed size overlapping sliding window based 
cloud load subsequence extraction 
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many knowledge discovery and data mining tasks. 
The clustering problem addressed in this study can be 
described as follows: 

Given n cloud computing load time series sub-
sequences X={x1, x2, …, xn} of equal length, with 
index set I={1, 2, …, n} and a fixed integer K<<n, a 
partition Cluster=(Cluster1, Cluster2, …, ClusterK) of 
I and HMMs, λ1, λ2, …, λK that meet specific criteria 
are computed. The unsupervised HMM clustering 
method proposed in this study is a nested algorithm. 
We aim to build models based on the data structure 
and explain dynamic phenomena in a manner that is 
easy to interpret. Objective techniques should be 
employed when partitioning data into homogeneous 
groups. The proposed clustering algorithm searches 
for the optimal set of clusters that represents the best 
data partition based on the AIC, and builds the most 
appropriate HMM model for each cluster (i.e., de-
termining the optimal HMM model states) according 
to the BIC. This refinement procedure starts with an 
initial model configuration and incrementally grows 
or shrinks the model through HMM based splitting 
and merging operations for choosing the right model 
size; e.g., the process starts with one cluster, and the 
number of clusters is increased in steps, or it starts 
with a configured maximum number of clusters, and 
the number of clusters is decreased based on their 
chosen criterion. In this study, we apply the model 
expansion approach which starts with the minimum 
model size, and the model size is increased until the 
best model is found. There are two search steps to find 
the optimal HMM states for each cluster and deter-
mine the optimal number of clusters in a partition. Both 
search steps are described in the following subsections. 

2.2.1  Searching for the optimal HMM states 

Searching for the optimal HMM states for each 
cluster can obtain the HMM with the optimal number 
of states for time series data grouped in the same 
cluster. The goal is to seek a model that can better 
account for the data, i.e., having a higher model pos-
terior probability. The Bayesian model is adopted to 
find the optimal HMM structure for each cluster. 

The Bayesian model merging criterion trades the 
model likelihood against the bias to a simpler model. 
A prior probability of a fully parameterized HMM 
model λ=(π, A, B) is assumed, where π represents the 
initial state probabilities. The probability of each state 

is the initial state of a given data sequence, where A is 
the transition matrix that defines the probability of 
transition from state i at time t to state j at the next 
time step, and B is the emission probability matrix 
that defines the probability of generating feature 
values at each state. The model structure λ and the 
model parameter θ are uniformly distributed. Given 
data X, the posterior probability of the model P(λ, θ|X) 
can be described by using the Bayesian rule as  

 

( , ) ( , )
( , )

( )

P P X
P X

P X

   
   ,             (1) 

 
where P(λ, θ) and P(X) are the prior probabilities of 
the model and the data, respectively, P(X|λ, θ) is the 
marginal likelihood of the data, and the prior prob-
ability of the data will not change across different 

models. As a consequence, we will have P(λ, θ|X) 
P(λ, θ)P(X|λ, θ). We can assign an equal prior prob-

ability P(λ, θ) to all models. Thus, P(λ, θ|X)P(X|λ, θ). 
The posterior probability is proportional to the mar-
ginal log-likelihood of the given data. Bayesian 
model selection finds the model that has the highest 
marginal log-likelihood, which can be computed as 
 

BIC(log ( , ), )k k k kP X d   

ˆlog ( , ) log
2

k
k k k k

d
P X N   ,              (2) 

 
where dk is the dimensionality of the model parameter 
space, Nk is the object in cluster k, θk is the maximum 

likelihood (ML) configuration of the model, k̂  is the 

re-estimated value of θk obtained by using the Baum- 

Welch procedure (Bilmes, 1997), ˆlog ( , )k k kP X    is 

the log-likelihood with a negative value, and 
(dklog Nk)/2 is the model complexity penalty term that 
tends to simplify models with fewer parameters. BIC 
seeks the best model for the data by trading off 
log-likelihood and penalty terms. The log-likelihood 
increases as the size of the HMM model increases 
until it reaches a peak value. It starts to decrease be-
cause of the increase in the model complexity penalty. 
The peak value obtained by combining the log- 
likelihood and penalty terms corresponds to the op-
timal model size. 
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2.2.2  Searching for the optimal cluster number 

We use first-order continuous density HMMs  
to model the data. These datasets come from a  
combination of the underlying mixture Gaussian dis-
tribution. Each component of the mixture represents a 
cluster. A mixture HMM model M associated with K 
clusters λ1, λ2, …, λK is given. From this model, the 
log-likelihood of an object is computed as the com-
bination of weighted log-likelihoods from all com-
ponent models in the mixture. In this study, to make 
the computation feasible, we further approximate the 
log-likelihood value. The log-likelihood value of the 
given data from the mixture model is expressed as 

 

  ˆlog ( , )P X M      

11

ˆlog ( , , )
N K

k i i k k k
ki

P f   


 
  

 
 x x  

1 1

ˆlog ( , , )
N K

k i i k k k
i k

P f   
 

   
 

  x x  

1 1

ˆ[log log ( , , )]
N K

k i i k k k
i k

P f   
 

   x x  

1 1 1 1

ˆlog log ( , , )
N K N K

k i i k k k
i k i k

P f   
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    x x ,   (3) 

 

where ˆ( , , )i i k k kf   x x  is the probability that an 

object xi belongs to the kth component λk. Parameters 
are described by θk, and Pk is the prior probability of 
the component model. Searching for the optimal 
number of clusters yields the best mixture model for 
the data. To achieve this, we find λk the partition 
model that has the highest partition posterior prob-
ability P(M|X). We exploit AIC for this task, which 
we revise and can be expressed as 

 

( 1)
AIC LL

1C

d d
d

N d


  

 
,                 (4) 

 
where d is the total number of free parameters that are 
estimated in the mixture HMM model M, i.e., 

1
,

K

kk
d d


   N is the total number of samples, and LL 

is the negative log-likelihood which the model uses to 
represent the observations. The following is used to 

compute the P(M|X) for a clustering partition model 
with K clusters by using the AIC approximation:  
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where dk is the number of free parameters in cluster k 
as mentioned above. The optimal cluster number is 
determined by increasing K between a minimum and 
maximum limit in increments and by the difference 
between the minimum and maximum limits. Similar 
to the BIC based optimal state searching, AIC finds 
the best partition for the data by trading off the 

log-likelihood term log ( | , )P X M  and the penalty 

term 1

1

( )

( ) 1

K

kk
K

kk

N K d

N K d





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


. 

In our study, HMM model state selection is 
performed after HMM clustering to automatically 
determine the optimal HMM states for load subse-
quences in each cluster. Accurately estimating the 
sizes for individual cluster models improves the 
overall partition model quality.  

 
 

3  Cloud computing load prediction approach 

3.1  HMM clustering based cloud load prediction 

After unsupervised load subsequence clustering, 
all load subsequences are placed in different clusters, 
where each cluster has a related HMM model. Next, 
we find the historical load subsequences that have the 
most similar characteristics to the current load sub-
sequence. To do this, the likelihood value for the 
observation sequence on the current load subsequence 
is obtained. In our experiments, the current load 
subsequence is the last subsequence of the whole 
historical load, i.e., xn mentioned in Section 2.1. For 
clarification, we assume that the HMM likelihood 
value of the current resource load observation sub-
sequence is LC. From the historical dataset clusters, 
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load subsequences are located in different HMM 
clusters and the one that produces the maximum li-
kelihood value of LC will be selected. Then, the 
whole length of d load subsequences in this cluster 
and their next length of h time series subsequences are 
treated as the training and testing data for the Elman 
network, respectively. Finally, the GA-Elman net-
work prediction model can be used to obtain the fu-
ture load. 

3.2  Genetic algorithm optimized Elman network 
prediction model 

The Elman neural network is a partial recurrent 
network model which was first proposed by Elman 
(1990) and is considered a cross between a classic 
feed-forward perception and a pure recurrent network. 
In contrast to the feed-forward loop that consists of 
input, hidden, and output layers with variable weights 
connecting two neighboring layers, the back-forward 
loop employs a context layer that is sensitive to the 
historical input data; thus, the connections between 
the context layer and hidden layer are fixed. The dy-
namic characteristics of the Elman neural network are 
provided only by internal connections, so it does not 
need to use the state as an input or training signal, 
which makes the Elman network widely used in dy-
namic systems. Fig. 3 shows the structure of the El-
man network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The network contains four layers: input layer, 

hidden layer, context layer, and output layer. The 
context layer is used to remember the output of the 
hidden layer, which can be treated as a step delay 
operator. The association among these four layers is 
sensitive to historical data, and the internal feedback 
network increases the ability to process dynamic time 

varying data. In general, n nodes are present in the 
input layer, m nodes in the output layer, and r nodes in 
the hidden and context layers. The weight of the input 
layer to the hidden layer is w1; the weight of the 
context layer to the hidden layer is w2; the weight of 
the hidden layer to the output layer is w3. u(t) is set as 
the input at time t; x(t) is the output of the hidden layer; 
xc(t) is the output of the context layer; and y(t) is the 
output of the neural network. Therefore, 

 

2 c 1( ) ( ( ) ( ( 1)))x t w x t w u t   ,               (6) 

 
where xc(t)=x(t−1). ξ is the transfer function of the 
hidden layer. Then, we use the common S-type  
function 
 

1( ) (1 e ) .xx                             (7) 
 

The output of the Elman neural network is 
 

3( ) ( ( )),y t w x t                            (8) 

 
where ζ is the transfer function of the output  
layer, which is a linear function. In this study, we 
employ a GA to optimize the network weights and 
thresholds simultaneously to produce better predic-
tion performance. 

GA maintains a population of chromosomes 
(individuals), which represent potential solutions to a 
problem to be solved, that is, the optimization of a 
function, which is generally very complex. Each in-
dividual in the population has an associated fitness, 
which indicates the utility or adaptation of the solu-
tion that it represents. GA starts with a population of 
randomly generated chromosomes and advances to-
ward better chromosomes by applying genetic op-
erators that are modeled on genetic processes which 
occur in nature. During successive iterations, called 
generations, the chromosomes are evaluated as pos-
sible solutions. Based on these evaluations, a new 
population is formed by using a selection mechanism 
and applying genetic operators such as crossover and 
mutation. Using GA to optimize the Elman network 
includes chromosome coding, fitness function adap-
tation, and defining the network structure. In this 
study, GA-Elman optimization is an adaptive scheme 
that can automatically adjust the Elman network’s 
connection weights and thresholds (Fig. 4). 

Context nodes

Input nodes

Hidden nodes

Output nodes

…

…

…

…

Fig. 3  Structure of the Elman network
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The operation of the GA-Elman algorithm is 

described as follows: 
Step 1: Encode the Elman network’s weights and 

thresholds. 
Step 2: Decode step 1 and compute a different 

network from the current population. 
Step 3: Train the network with given training 

data. If the current network satisfies the problem 
requirements, then stop; otherwise, continue to the 
next step. 

Step 4: Determine the individual fitness by the 
objective function and training results, and choose a 
number of individuals with the smallest fitness to 
inherit to the next generation. The fitness function is 
the mean square error (MSE) in this study. 

Step 5: Generate a new population by applying 
the genetic operators of crossover and mutation to this 
intermediate population. 

Step 6: Return to step 2 until a certain termination 
criterion is met or the maximum training generations. 

 
 

4  Evaluations and experiments 
 

Experiments were conducted to validate our 
modeling strategy in terms of CPU load prediction in 
cloud computing. The proposed load predictive ap-
proach was evaluated by using real-world load trace 

from the Google Data Center. In 2011, Google pub-
lished a new sample dataset of resource usage infor-
mation from a Google production cluster. This cluster 
trace consists of data collected from approximately 
12 500 servers which have a 29-day duration and 
contain nearly 650 000 jobs (Reiss et al., 2012). By 
leveraging Google’s machine event trace which con-
tains each host’s capacity (re-scaled), we collected 
about a week’s data, and calculated 600 000 relative 
CPU loads by dividing the absolute values according 
to corresponding capacities (Di et al., 2012b). The 
formula for data normalization is 

 

1 1

1
Average CPU load Load ,

C J
j
c

c jC  

          (9) 

 

where C is the total number of running machines at a 

given time point, and Load j
c  (c=1, 2, …, C) is the jth 

task’s CPU load value of one particular running ma-
chine c, which is obtained from dividing the absolute 
values by corresponding capacities. We also used a 
week’s load from NASA (Duy et al., 2010; Prevost et 
al., 2011) to conduct our experiments.  

Both the evaluation and comparison of the pro-
posed model for load prediction will be presented to 
compare the performance of our prediction strategy 
with those of other methods. We evaluated and 
compared our prediction method based on two classic 
metrics, MSE and the mean absolute error (MAE), 
which are defined as follows: 

 

2 2

1 1

ˆMSE ( ) ,
t T t T

t t t
t t

y y y
 

 

               (10) 

1

1
ˆMAE ,

t T

t t
t

y y
T





                  (11) 

 

where ˆty  represents the load prediction value, ty  is 

the actual measurement, and T is the number of load 
time series data points that need to be predicted. 

4.1  Model evaluation 

For practical resource management in cloud 
computing, setting up new VM instances on demand 
takes 5–10 min (Li et al., 2010; Islam et al., 2012). 
Hence, the resource management middleware needs 
to request new virtual instances about 10 min earlier 
to accommodate increased resource requirement in 

Initialize the Elman network topology

Encode chromosomes as the weights 
and thresholds of the Elman network 

Decode chromosomes as the weights 
and thresholds of the Elman network 

Train the network and computing the 
fitness (MSE) of each chromosome

Termination criterion 
reached?

Best fitness chromosome 
representing optimized 

weights and thresholds for
the Elman network

Yes

No
Selection

Crossover

Mutation

GA 
operations

New 
population

Fig. 4  GA-optimized Elman network
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the cloud. The one-step-ahead prediction interval T in 
our experiment was set to 300 data points (5 min), i.e., 
h=300, and the number of output layer nodes of the 
Elman network was also 300. As described in Section 
2.2, we should determine the best value of γ, that is, 
the optimal number of input layer nodes for the Elman 
network. We applied FSOSW to extract load subse-
quences with different lengths from the historical data 
and trained the network by using the whole load trace 
without clustering. The maximum number of itera-
tions for GA was 20, and the maximum number of 
epochs for the Elman network was 1500, because in 
all of our experiments, GA and the Elman network 
reached their own convergence status before those 
maximum numbers of epochs. These numbers are 
also the termination criteria and experimental pa-
rameter setting, respectively, for the next experiments. 
Table 1 presents the training MSE of different γ’s. 

 
 
 
 
 
 
 
 
 
 
Table 1 shows that when γ increased, the training 

errors of both datasets increased. The best value of γ 
in our experiment was 1, i.e., d=h=300, and the 
number of output layer nodes was also 300. Next, we 
used the proposed unsupervised HMM clustering to 
find the optimal number of clusters and the best 
HMM state for each cluster. Fig. 5 shows the char-
acteristics of the AIC measure for clustering the par-
tition model selection by using historical load data. 

As the cluster number increases, the log- 
likelihood value and the penalty increase monotoni-
cally. AIC increased initially as the cluster number 
increased until it reached a peak value and then began 
to decrease because of the trade-off between the log- 
likelihood term and the model complexity penalty 
term. AIC reached the peak when the number of 
clusters was four for the Google trace and five for the 
NASA trace, which means the best partitions that can 
represent data structure were four and five clusters for 
the Google and NASA traces in our experiments, 
respectively. After cluster number selection, the 

proposed unsupervised method needs to find the best 
HMM state for each cluster. In this procedure, BIC 
was used to seek the optimal HMM state for each 
cluster. The final transition matrices of the clusters are 
shown in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Training MSE of different γ’s 

MSE 
γ 

Google NASA 
1 0.0311 0.0342 
2 0.0395 0.0467 
3 0.0455 0.0703 
4 0.0639 0.0481 
5 0.0772 0.1135 
6 0.0924 0.1597 

 

Table 2  The transition matrix of each cluster 

Transition
matrix 

Google NASA 

1HMMA
0.6178 0.3822

0.4119 0.5881

 
 
 

 
0.8147 0.1853

0.2019 0.7981

 
 
 

 

 

2HMMA

0.4019 0.2372 0.3609

0.3721 0.4683 0.1596

0.3561 0.2174 0.4265

 
 
 
 
 

 

0.6324 0.2100 0.1576

0.0975 0.7505 0.1520

0.2085 0.2446 0.5469

 
 
 
 
 

3HMMA
0.6379 0.2585 0.1036

0.3210 0.5255 0.1535

0.2553 0.1521 0.5926

 
 
 
 
 

 
0.5146 0.4854

0.4218 0.5782

 
 
 

 

4HMMA
0.5161 0.4839

0.3785 0.6215

 
 
 

 
0.6078 0.3922

0.4118 0.5882

 
 
 

 

5HMMA NULL 

0.5519 0.1712 0.2769

0.1545 0.7075 0.1380

0.3018 0.1034 0.5948

 
 
 
 
 
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Fig. 5  AIC measure for model selection of the Google 
trace (a) and NASA trace (b) 
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Table 3 reports the HMM log-likelihood value of 
the current load subsequence from every cluster, as 
well as the number of load subsequences in each 
cluster. 

 

 
 
 
 
 
 
 
 
 
 
Table 3 shows that the maximum log-likelihood 

value was from HMM3 and HMM2 for the Google and 
NASA traces, respectively, which means that load 
subsequences in clusters 3 and 2 were most similar to 
their current loads. These load subsequences will be 
fed into the GA-Elman network as training data to 
forecast future load in cloud. The final step of our 
model evaluation was to find the optimal number of 
hidden layer nodes for the Elman network. No exist-
ing approach or rule was available to search for the 
best hidden layer nodes. Duy et al. (2011) employed 
artificial neural networks to forecast the host load on 
computational grids. They followed the trial-and- 
error method for obtaining the optimal network ar-
chitecture by testing several numbers of hidden layer 
nodes, which could promise both high performance 
and low overhead. Hence, we tested different num-
bers of hidden layer nodes and empirically chose the 
best one with the minimum training MSE. Table 4 
illustrates the MSE results of the different numbers of 
hidden layer nodes. The optimal numbers of hidden 
layer nodes were 35 and 30 for the Google and NASA 
traces, respectively. 

 
 
 
 
 
 
 
 
 
 
 

After load subsequence clustering and optimal 
Elman network structure determination, the proposed 
prediction model HGE was employed to forecast 
future load from a historical trace. Fig. 6 displays the 
prediction results of our model. The predicted load 
was very close to the actual load, which demonstrates 
the effectiveness of the method. In the next subsection, 
we will make a comprehensive comparison between 
HGE and other prediction models. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Comparison with other prediction models 

In this subsection, we implemented other time 
series prediction algorithms, including GM(1, 1), auto 
regression (AR, of order 9), moving average (MA), 
exponential smoothing (ES, with α=0.5), BP neural 
network, the recently proposed polynomial fitting (PF) 
(Zhang et al., 2006), and ANFIS (Atique and Ali, 
2007), for a comprehensive comparison with our 
HGE prediction model. We compared the models 
using the parameters that give the best prediction 
performance for every model. The predictive models 
were divided into two categories. GM, AR, MA, and 
ES belong to the first category. These are traditional 
prediction models that will be adopted to directly 

Table 3  Log-likelihood of each HMM for current load

Number of load  
subsequences 

 Log-likelihood 
HMM 

Google NASA  Google NASA

HMM1 18 346  −307 −324 

HMM2 996 708  −320 −286 

HMM3 856 102  −293 −357 

HMM4 130 169  −385 −318 

HMM5 NULL 675  NULL −302 

Table 4  Training MSE of various numbers of hidden 
layer nodes 

MSE Number of nodes 
in the hidden layer Google NASA 

15 0.0461 0.0491 
20 0.0412 0.0424 
25 0.0320 0.0399 
30 0.0303 0.0317 
35 0.0294 0.0362 
40 0.0376 0.0388 
45 0.0404 0.0416 
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Fig. 6  Load prediction results of the Google trace (a) and 
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forecast future cloud computing load from historical 
load time series data without clustering. BP neural 
network, PF, and ANFIS, which are state-of-the-art 
prediction methods that forecast future load, belong to 
the second category. 

First, we conducted one-step-ahead load predic-
tion. Table 5 reports the MSE and MAE results of all 
the prediction methods. As shown in Table 5, our 
prediction model showed advantages over the tradi-
tional models. MSE was several times smaller than 
those of traditional models. The PF, ANFIS, and HGE 
models exhibited similar forecasting accuracies and 
performed better than the BP neural network. Hence, 
GA improves the performance of the Elman network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

To further evaluate the forecasting performance 
of the HGE model, we tested the performance of our 
model by performing iterative multi-step-ahead pre-
diction based on one-step-ahead prediction. Fig. 7 
shows the comparative MAE results of HGE and 
other models by performing steps 2 to 6 in the opera-
tion of the GA-Elman algorithm. Table 6 shows the 
corresponding MSE results. As the prediction step 
increases, the prediction errors of all models in-
creased. Our model’s prediction error remained ac-
ceptable, which indicates its effectiveness and stable 
performance. Compared with traditional prediction 
models, our model’s superior prediction ability was 
apparent. The HGE model had far lower prediction 
errors than traditional models. Models in the second 
category were effective in dynamic time series data 
prediction and had lower prediction errors than mod-
els in the first category. In most situations, our pro-
posed model outperformed both the first and second 
category models. As shown in Fig. 7, from two to six 
iterative prediction steps, the MAEs of our model 
were 0.036 to 0.067 and 0.358 to 0.559 for the Google 
and NASA traces, respectively.  

4.3  Computational cost 

In practical applications, the running time of  
a prediction model is a significant issue. In this  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  MSE and MAE results of one-step-ahead prediction

MSE  MAE Prediction 
model Google NASA  Google NASA 

AR 0.071 0.083  0.075 0.965 

MA 0.092 0.107  0.083 1.174 

ES 0.067 0.080  0.074 0.828 

GM 0.083 0.095  0.097 1.227 

BP 0.046 0.048  0.049 0.467 

PF 0.039 0.044  0.036 0.412 

ANFIS 0.035 0.037  0.035 0.336 

HGE 0.029 0.032  0.031 0.294 

 

Fig. 7  Mean absolute error results of iterative multi-step-ahead prediction for Google trace (a–b) and NASA trace (c–d)
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subsection, the computational cost of our load pre-
diction model is given. In our approach, HMM based 
unsupervised clustering can be done offline. Newly 
arriving data will be added and processed incremen-
tally. For Google and NASA traces with 600 000 time 
series data points, after FSOSW based load subse-
quence extraction, the HMM based clustering time for 
Google and NASA traces were 8.7 s and 9.3 s, re-
spectively. Therefore, the prediction time of the GA-  
Elman network is what we are mostly concerned 
about. Our experiments were conducted on a com-
puter equipped with an Intel i3 2.20 GHz CPU. The 
prediction time of our model is shown in Table 7.  

The prediction time of AR, MA, ES, and GM 
was much longer than that of BP, PF, ANFIS, and 
HGE, because AR, MA, ES, and GM use the whole 
trace to predict future load, whereas BP, PF, ANFIS, 
and HGE apply only a certain part of the load trace. 
Compared with BP, PF, and ANFIS, our model had a 
longer prediction time, because GA requires a little 
more time to optimize the Elman network. However, 
the prediction time of HGE remained acceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
5  Conclusions 
 

Our study is a contribution to short-term load 
prediction modeling in a cloud computing environ-
ment. The present approach represents the scheme of 
the hybrid system, which combines the unsupervised 
HMM clustering algorithm and genetic algorithm 
optimized Elman network. First, historical load time 
series data from the cloud computing platform is 
divided into small subsequences, and then we use the 
unsupervised HMM clustering method to put the 
similar subsequences together according to the dis-
tance between them. Second, we employ a genetic 
algorithm optimized Elman network to forecast the 
future load from the cluster with the maximum log- 
likelihood for the current load. We evaluated our 
model using load from a real world cloud computing 
trace. Experimental results show that our model out-
performs other algorithms for dynamic cloud load 
prediction. In future work, we plan to consider the 
correlation between CPU, memory, and disk and 
make a multivariate prediction for better resource 
management in a cloud computing platform.  
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