
Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 845

A mixture of HMM, GA, and Elman network for load

prediction in cloud-oriented data centers*

Da-yu XU†1,2, Shan-lin YANG1, Ren-ping LIU2
(1MOE Key Laboratory of Process Optimization and Intelligent Decision-Making, Hefei University of Technology, Hefei 230009, China)

(2Information and Communication Technologies Centre, CSIRO, Sydney 2122, Australia)
†E-mail: xdyhfut@163.com

Received Apr. 25, 2013; Revision accepted Sept. 16, 2013; Crosschecked Oct. 15, 2013

Abstract: The rapid growth of computational power demand from scientific, business, and Web applications has led to the
emergence of cloud-oriented data centers. These centers use pay-as-you-go execution environments that scale transparently to the
user. Load prediction is a significant cost-optimal resource allocation and energy saving approach for a cloud computing envi-
ronment. Traditional linear or nonlinear prediction models that forecast future load directly from historical information appear less
effective. Load classification before prediction is necessary to improve prediction accuracy. In this paper, a novel approach is
proposed to forecast the future load for cloud-oriented data centers. First, a hidden Markov model (HMM) based data clustering
method is adopted to classify the cloud load. The Bayesian information criterion and Akaike information criterion are employed to
automatically determine the optimal HMM model size and cluster numbers. Trained HMMs are then used to identify the most
appropriate cluster that possesses the maximum likelihood for current load. With the data from this cluster, a genetic algorithm
optimized Elman network is used to forecast future load. Experimental results show that our algorithm outperforms other ap-
proaches reported in previous works.

Key words: Cloud computing, Load prediction, Hidden Markov model, Genetic algorithm, Elman network
doi:10.1631/jzus.C1300109 Document code: A CLC number: TP391

1 Introduction

Demand for high-performance computing infra-
structures from modern resource intensive enterprises
and scientific applications has been growing recently.
Server-side computing and the exploding popularity
of Internet services have rapidly made large-scale
data centers an integral part of the Internet fabric
(Marston et al., 2011). Cloud computing, which has
been introduced recently, is a paradigm that stream-
lines on-demand provisioning of software, hardware,
and data services. It also provides end users with
flexible and scalable services that are accessible
through the Internet (Armbrust et al., 2009). It allows

organizations to outsource their computation needs to
the cloud and eliminates the need for these organiza-
tions to maintain their own computing infrastructure
(Vaquero et al., 2009). To ensure high scalability,
flexibility, and cost effectiveness, cloud platforms
need to be able to quickly plan and provide resources,
which will ensure that supporting infrastructures can
closely match the needs of various applications.
Cloud platforms require mechanisms to continuously
characterize and predict their loads.

Load prediction is a crucial issue for efficient
resource utilization in a dynamic cloud computing
environment. Based on future load prediction and an
estimate of the future performance of each virtual
machine (VM), management middleware in cloud can
allocate enough resources for running services while
avoiding costly over provisioning. Hence, the prob-
lem for elastic resource management involves

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

* Project (No. 71131002) supported by the National Natural Science
Foundation of China
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 846

deciding when, how much, and whether to scale VM
up or down. Scaling can be done horizontally by in-
creasing or decreasing the number of allocated VMs.
Scaling can also be performed vertically by changing
the hardware configuration for the CPU, memory, and
input/output, among others, of already running VMs.
Given the scale of the current and future loads in
cloud data centers and services, autonomic manage-
ment can be implemented for clouds (Calheiros et al.,
2011). Effective load prediction will help adminis-
trators take appropriate actions in preventing the
system suffering from traffic surge or the Slashdot
effect (Bauer and Adams, 2012), which is caused by
high load.

In the past few years, some studies have been
devoted to load prediction in cloud computing envi-
ronments. Caron et al. (2010) presented a Knuth-
Morris-Pratt (KMP) based string matching algorithm
to forecast the on-demand cloud computing resource
workload. KMP uses a set of historical data to identify
similar load patterns in a current window for records
that occurred in the past. The algorithm predicts cloud
workload by interpolating what follows after the
identified patterns from the historical data. Duy et al.
(2010) proposed a strategy for energy conservation in
cloud infrastructures using a neural predictor to
forecast future load. They attempted to reduce the
number of running servers to minimize energy con-
sumption while ensuring that the service level
agreement (SLA) requirements are met by using ac-
curate load prediction. Saripalli et al. (2011) used a
load tracker function to obtain a representative view
of the cloud workload trend from measured raw data.
They used cubic spline interpolation to predict loads
at any given timestamp (in the future). This algorithm
can predict future resource loads and detect hot spots
under real-time constraints. Islam et al. (2012) pre-
sented empirical prediction models for adaptive re-
source prediction in a cloud environment and devel-
oped load prediction based resource measurement and
provisioning strategies. They employed a neural
network and linear regression model to predict up-
coming resource demands. Their method offers more
adaptive resource management for applications that
can be achieved through on-demand resource alloca-
tion in cloud computing. Khan et al. (2012) proposed
a new means of characterizing correlated workload
patterns across servers resulting from the dependen-

cies of applications that run on these servers. They
treated server performance data samples as multiple
time series and introduced a co-clustering algorithm
to identify server groups and time periods when cer-
tain workload patterns appear in a group. A hidden
Markov model (HMM) was used to explore temporal
correlations in workload pattern changes. Finally,
server behavior could be predicted based on the server
groups. The proposed method takes into account the
load characteristics in cloud computing and provides
a better prediction performance.

We argue that the key to accurate load prediction
in cloud computing is proper modeling of the rela-
tionship between historic data and future values, and a
proper understanding of cloud computing backend
workloads. Benson et al. (2010), Mishra et al. (2010),
Di et al. (2012a), and Reiss et al. (2012) analyzed the
characteristics of cloud load and studied the differ-
ences between the cloud data center and other Grid or
high performance computing (HPC) systems from the
perspectives of resource utilization, resource requests,
and job execution time, among others. On the basis of
their work, we summarized the main differences
between cloud computing and other Grid or HPC
systems: (1) Most jobs in the cloud are small, and they
are generally slighter than those in Grid or HPC; (2)
The execution time of cloud jobs is shorter than that
of Grid or HPC jobs; (3) Load in clouds has higher
noise and changes frequently in shorter periods,
whereas the host load of Grid or HPC systems is more
stable during relatively long periods. These un-
avoidable dynamic load changes increase barriers to
better prediction performance in a cloud computing
environment.

The motivation for our work is to develop an
approach that can discover load patterns automati-
cally, classify the load objectively, and forecast future
load accurately. We take the perspective of a cloud
service provider who hosts multiple sites with vast
amounts of virtualized servers, such as the Amazon
Elastic Compute Cloud (EC2). We focus on short-
term load prediction for real-time cloud computing
resource allocation and management. Based on short-
term prediction of future load (Bennani and Menasce,
2005; Ardagna et al., 2012), the cloud administrator
will be able to implement appropriate measures at a
more fine-grain time scale (e.g., from 5 to 10 min). As
shown in Fig. 1, we propose a hybrid approach to

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 847

forecast future load in cloud computing. A hybrid
model has both linear and nonlinear modeling abili-
ties and thus can be a good alternative for predicting
time series data. Combining various models can
capture different aspects of underlying patterns
(Zhang, 2003). Recently, researchers proved that
hybrid approaches integrating classification methods
achieve greater prediction accuracy than do single
models (Yu et al., 2008; Hassan et al., 2012; Khashei
et al., 2012).

Our hybrid approach is composed of three major
phases: load subsequence extraction, load subse-
quence clustering, and future load prediction. First,
we adopt the fixed size overlapping sliding window
(FSOSW) (Arasu and Manku, 2004) to extract load
subsequences from historical time series data. Second,
we employ HMM based unsupervised data clustering
to identify natural groupings of cloud computing load
data from a large set of historical traces to concisely
represent the system behavior. Many clustering tech-
niques, such as K-means, C-means, and the fuzzy
theory based clustering method (Kaur et al., 2013),
have been studied by researchers in various areas,
such as statistics, pattern recognition, and machine
learning. However, most existing clustering ap-
proaches were assumed to have a pre-specified
number of clusters. This assumption is not true for
every situation, because we have insufficient know-
ledge about data structures from different domains
before clustering. Furthermore, different clusters in a
partition should represent different dynamic patterns
and structures. The predetermined clustering partition
is not selected objectively. Therefore, an objective

criterion should be employed to partition data into
homogeneous groups, and models that can best ex-
plain the phenomena associated within each group
should be derived.

HMM is an effective tool for modeling time
varying processes and capturing dynamic properties
of temporal data (Rabiner, 1989). It also adopts
probability measures to model sequential data repre-
sented by observation sequences. HMM has been
extensively used in various applications, such as
speech signal recognition (Liang et al., 2007), finance
(Zhang, 2004; Hassan et al., 2007), DNA sequence
analysis (Andersson et al., 2012), and time series data
pattern discovery and prediction (Niu et al., 2009;
Wang et al., 2011). In the present study, the Bayesian
information criterion (BIC) (Weakliem, 1999) and
Akaike information criterion (AIC) (Bozdogan, 1987)
are adopted to find the optimal HMM model size and
cluster partition. BIC and AIC are widely used model
selection criteria to find the best fitting model to the
data (Burnham and Anderson, 2004). They select the
optimal model that can minimize negative likelihood
penalized by the number of parameters. Similar data
falls in the same cluster after data clustering. Thus,
the current load data will have a likelihood value
produced by HMMs in each cluster. From these
clusters, the historical data that has the maximum
HMM likelihood value and the next time interval data
will be chosen for prediction model training and fu-
ture load forecasting.

Finally, a genetic algorithm (GA) optimized
Elman network is used to forecast required load in the
data during the next time period. The Elman network
is a recurrent neural network, which is used to predict
nonlinear and dynamic time series data in various
areas (e.g., traffic flow, electric power load, weather,
and cloud computing host load). These networks are
self-studying, data driven, self-organizing, and self-
adaptive, and they possess associative memory. Arti-
ficial neural networks can learn from patterns and
capture hidden functional relationships in given data,
even if the relationships are unknown or difficult to
identify. Consequently, unseen inputs can be fed to
the trained networks to generate appropriate outputs
(Palit and Popovic, 2005; Hirose, 2012). However,
the Elman network, which learns the network by
modifying the weight and threshold values, starts at
the output layer, and then moves backward through

Fig. 1 Block diagram of the proposed prediction process

Historical cloud load
time series data sets

Current cloud load
time series data

Data clusters

HMM1

Cluster1

HMMk

ClusterK

Training

Data in Clusteri
with the maximum

HMM likelihood

GA-Elman
network

prediction model

Future
cloud load

…

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 848

the hidden layers. By applying a gradient method, the
Elman network finds better weights and thresholds,
but it is prone to local minimum problems and slow,
with unsteady convergence during its training pro-
cedure. To overcome these weaknesses, we adopt a
GA to optimize the weights and thresholds. GA is a
stochastic general search method, which performs a
global search and can effectively explore large search
spaces. GA can help discover better network connec-
tion weights and parameters, thus improving the pre-
diction accuracy of the Elman network. We name our
model HGE, and experimental results show that the
proposed method can perform more accurate load
prediction in a cloud computing environment com-
pared with other models.

2 An unsupervised offline load clustering
approach

In this section, we introduce the proposed un-
supervised offline load clustering method. In Section
2.1, we describe the fixed size overlapping sliding
window (FSOSW) based load subsequence extraction
technique and the dual time scale new arrival load
time series data updating method. The HMM based
unsupervised load subsequence clustering method is
detailed in Section 2.2.

2.1 FSOSW based load subsequence extraction

Given an L cloud computing load time series
data, we use FSOSW to divide the total length of L
historical load into n subsequences of equal length d.
We then obtain n d-dimensional data points xi (i=1,
2, …, n, n=L/d) for clustering; i.e., we will treat
d-length load subsequences as d-dimensional data
points when they are classified into different clusters
by using HMM. Fig. 2 shows the whole load subse-
quence extraction process.

The sliding window size is equal to d+h, where h
is the length of the load subsequence that needs to be
predicted; i.e., d-dimensional data point xi and their
next h-dimensional data points are extracted simul-
taneously to establish a rational connection between
current loads and future loads. The d-dimensional and
h-dimensional data points, which represent d-length
and h-length load subsequences respectively, are the
training and testing data for the Elman network re-

spectively, which can help logically build the network
structure. In accordance with the structure of the El-
man network, the length of subsequence d in our
study is an integer multiple of the prediction length h
(i.e., d=γh). The number of input layer nodes is d, and
h is the number of output layer nodes in the Elman
network. Hence, d and h have a significant impact on
the prediction performance of the Elman network.
Coefficient γ cannot be determined by existing ex-
perience or formula, so it will be studied in later
experiments.

We make use of d-dimensional data point xi in

the same fuzzy cluster and the next h-dimensional
data as the training data to build the GA-Elman net-
work predictors with the best fitness. Length-d sub-
sequences will be placed into different clusters by
using the HMM clustering algorithm, which will be
based on their load characteristics. When the new
load arrives, the newcomers will be divided into small
load subsequences with a length of d by using
FSOSW. Dual time scales are available for data up-
dating. At a short time scale, for less than 6 or 12
hours, the new data with the maximum HMM like-
lihood values is placed into existing clusters. At a
long time scale, for more than 12 hours, we re-train
the whole historical data to obtain new HMMs and
clusters. In this way, the proposed method can adapt
to a dynamic load in real time by updating and
re-training with the latest data.

2.2 HMM based unsupervised load subsequence
clustering method

Clustering involves grouping data patterns into
clusters so that patterns within a cluster bear strong
similarity to one another but are very dissimilar to
those in other clusters. These clusters are central to

Fig. 2 The fixed size overlapping sliding window based
cloud load subsequence extraction

Sliding
window

d+h

d
h

d
h

L

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 L
oa

d

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 849

many knowledge discovery and data mining tasks.
The clustering problem addressed in this study can be
described as follows:

Given n cloud computing load time series sub-
sequences X={x1, x2, …, xn} of equal length, with
index set I={1, 2, …, n} and a fixed integer K<<n, a
partition Cluster=(Cluster1, Cluster2, …, ClusterK) of
I and HMMs, λ1, λ2, …, λK that meet specific criteria
are computed. The unsupervised HMM clustering
method proposed in this study is a nested algorithm.
We aim to build models based on the data structure
and explain dynamic phenomena in a manner that is
easy to interpret. Objective techniques should be
employed when partitioning data into homogeneous
groups. The proposed clustering algorithm searches
for the optimal set of clusters that represents the best
data partition based on the AIC, and builds the most
appropriate HMM model for each cluster (i.e., de-
termining the optimal HMM model states) according
to the BIC. This refinement procedure starts with an
initial model configuration and incrementally grows
or shrinks the model through HMM based splitting
and merging operations for choosing the right model
size; e.g., the process starts with one cluster, and the
number of clusters is increased in steps, or it starts
with a configured maximum number of clusters, and
the number of clusters is decreased based on their
chosen criterion. In this study, we apply the model
expansion approach which starts with the minimum
model size, and the model size is increased until the
best model is found. There are two search steps to find
the optimal HMM states for each cluster and deter-
mine the optimal number of clusters in a partition. Both
search steps are described in the following subsections.

2.2.1 Searching for the optimal HMM states

Searching for the optimal HMM states for each
cluster can obtain the HMM with the optimal number
of states for time series data grouped in the same
cluster. The goal is to seek a model that can better
account for the data, i.e., having a higher model pos-
terior probability. The Bayesian model is adopted to
find the optimal HMM structure for each cluster.

The Bayesian model merging criterion trades the
model likelihood against the bias to a simpler model.
A prior probability of a fully parameterized HMM
model λ=(π, A, B) is assumed, where π represents the
initial state probabilities. The probability of each state

is the initial state of a given data sequence, where A is
the transition matrix that defines the probability of
transition from state i at time t to state j at the next
time step, and B is the emission probability matrix
that defines the probability of generating feature
values at each state. The model structure λ and the
model parameter θ are uniformly distributed. Given
data X, the posterior probability of the model P(λ, θ|X)
can be described by using the Bayesian rule as

(,) (,)
(,)

()

P P X
P X

P X

   
   , (1)

where P(λ, θ) and P(X) are the prior probabilities of
the model and the data, respectively, P(X|λ, θ) is the
marginal likelihood of the data, and the prior prob-
ability of the data will not change across different

models. As a consequence, we will have P(λ, θ|X)
P(λ, θ)P(X|λ, θ). We can assign an equal prior prob-

ability P(λ, θ) to all models. Thus, P(λ, θ|X)P(X|λ, θ).
The posterior probability is proportional to the mar-
ginal log-likelihood of the given data. Bayesian
model selection finds the model that has the highest
marginal log-likelihood, which can be computed as

BIC(log (,),)k k k kP X d 

ˆlog (,) log
2

k
k k k k

d
P X N   , (2)

where dk is the dimensionality of the model parameter
space, Nk is the object in cluster k, θk is the maximum

likelihood (ML) configuration of the model, k̂ is the

re-estimated value of θk obtained by using the Baum-

Welch procedure (Bilmes, 1997), ˆlog (,)k k kP X   is

the log-likelihood with a negative value, and
(dklog Nk)/2 is the model complexity penalty term that
tends to simplify models with fewer parameters. BIC
seeks the best model for the data by trading off
log-likelihood and penalty terms. The log-likelihood
increases as the size of the HMM model increases
until it reaches a peak value. It starts to decrease be-
cause of the increase in the model complexity penalty.
The peak value obtained by combining the log-
likelihood and penalty terms corresponds to the op-
timal model size.

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 850

2.2.2 Searching for the optimal cluster number

We use first-order continuous density HMMs
to model the data. These datasets come from a
combination of the underlying mixture Gaussian dis-
tribution. Each component of the mixture represents a
cluster. A mixture HMM model M associated with K
clusters λ1, λ2, …, λK is given. From this model, the
log-likelihood of an object is computed as the com-
bination of weighted log-likelihoods from all com-
ponent models in the mixture. In this study, to make
the computation feasible, we further approximate the
log-likelihood value. The log-likelihood value of the
given data from the mixture model is expressed as

 ˆlog (,)P X M

11

ˆlog (, ,)
N K

k i i k k k
ki

P f   


 
  

 
 x x

1 1

ˆlog (, ,)
N K

k i i k k k
i k

P f   
 

   
 

  x x

1 1

ˆ[log log (, ,)]
N K

k i i k k k
i k

P f   
 

   x x

1 1 1 1

ˆlog log (, ,)
N K N K

k i i k k k
i k i k

P f   
   

    x x , (3)

where ˆ(, ,)i i k k kf   x x is the probability that an

object xi belongs to the kth component λk. Parameters
are described by θk, and Pk is the prior probability of
the component model. Searching for the optimal
number of clusters yields the best mixture model for
the data. To achieve this, we find λk the partition
model that has the highest partition posterior prob-
ability P(M|X). We exploit AIC for this task, which
we revise and can be expressed as

(1)
AIC LL

1C

d d
d

N d


  

 
, (4)

where d is the total number of free parameters that are
estimated in the mixture HMM model M, i.e.,

1
,

K

kk
d d


  N is the total number of samples, and LL

is the negative log-likelihood which the model uses to
represent the observations. The following is used to

compute the P(M|X) for a clustering partition model
with K clusters by using the AIC approximation:

AIC(log (),)kP M X d

 (1)
log (,)

1

d d
P X M d

N d
 

  
 

1 1 1 1

ˆlog log (,)
N K N K

k i k k
i k i k

P f  
   

   x

1

1

()

() 1

K

kk
K

kk

N K d

N K d







  




, (5)

where dk is the number of free parameters in cluster k
as mentioned above. The optimal cluster number is
determined by increasing K between a minimum and
maximum limit in increments and by the difference
between the minimum and maximum limits. Similar
to the BIC based optimal state searching, AIC finds
the best partition for the data by trading off the

log-likelihood term log (| ,)P X M and the penalty

term 1

1

()

() 1

K

kk
K

kk

N K d

N K d






  




.

In our study, HMM model state selection is
performed after HMM clustering to automatically
determine the optimal HMM states for load subse-
quences in each cluster. Accurately estimating the
sizes for individual cluster models improves the
overall partition model quality.

3 Cloud computing load prediction approach

3.1 HMM clustering based cloud load prediction

After unsupervised load subsequence clustering,
all load subsequences are placed in different clusters,
where each cluster has a related HMM model. Next,
we find the historical load subsequences that have the
most similar characteristics to the current load sub-
sequence. To do this, the likelihood value for the
observation sequence on the current load subsequence
is obtained. In our experiments, the current load
subsequence is the last subsequence of the whole
historical load, i.e., xn mentioned in Section 2.1. For
clarification, we assume that the HMM likelihood
value of the current resource load observation sub-
sequence is LC. From the historical dataset clusters,

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 851

load subsequences are located in different HMM
clusters and the one that produces the maximum li-
kelihood value of LC will be selected. Then, the
whole length of d load subsequences in this cluster
and their next length of h time series subsequences are
treated as the training and testing data for the Elman
network, respectively. Finally, the GA-Elman net-
work prediction model can be used to obtain the fu-
ture load.

3.2 Genetic algorithm optimized Elman network
prediction model

The Elman neural network is a partial recurrent
network model which was first proposed by Elman
(1990) and is considered a cross between a classic
feed-forward perception and a pure recurrent network.
In contrast to the feed-forward loop that consists of
input, hidden, and output layers with variable weights
connecting two neighboring layers, the back-forward
loop employs a context layer that is sensitive to the
historical input data; thus, the connections between
the context layer and hidden layer are fixed. The dy-
namic characteristics of the Elman neural network are
provided only by internal connections, so it does not
need to use the state as an input or training signal,
which makes the Elman network widely used in dy-
namic systems. Fig. 3 shows the structure of the El-
man network.

The network contains four layers: input layer,

hidden layer, context layer, and output layer. The
context layer is used to remember the output of the
hidden layer, which can be treated as a step delay
operator. The association among these four layers is
sensitive to historical data, and the internal feedback
network increases the ability to process dynamic time

varying data. In general, n nodes are present in the
input layer, m nodes in the output layer, and r nodes in
the hidden and context layers. The weight of the input
layer to the hidden layer is w1; the weight of the
context layer to the hidden layer is w2; the weight of
the hidden layer to the output layer is w3. u(t) is set as
the input at time t; x(t) is the output of the hidden layer;
xc(t) is the output of the context layer; and y(t) is the
output of the neural network. Therefore,

2 c 1() (() ((1)))x t w x t w u t   , (6)

where xc(t)=x(t−1). ξ is the transfer function of the
hidden layer. Then, we use the common S-type
function

1() (1 e) .xx    (7)

The output of the Elman neural network is

3() (()),y t w x t (8)

where ζ is the transfer function of the output
layer, which is a linear function. In this study, we
employ a GA to optimize the network weights and
thresholds simultaneously to produce better predic-
tion performance.

GA maintains a population of chromosomes
(individuals), which represent potential solutions to a
problem to be solved, that is, the optimization of a
function, which is generally very complex. Each in-
dividual in the population has an associated fitness,
which indicates the utility or adaptation of the solu-
tion that it represents. GA starts with a population of
randomly generated chromosomes and advances to-
ward better chromosomes by applying genetic op-
erators that are modeled on genetic processes which
occur in nature. During successive iterations, called
generations, the chromosomes are evaluated as pos-
sible solutions. Based on these evaluations, a new
population is formed by using a selection mechanism
and applying genetic operators such as crossover and
mutation. Using GA to optimize the Elman network
includes chromosome coding, fitness function adap-
tation, and defining the network structure. In this
study, GA-Elman optimization is an adaptive scheme
that can automatically adjust the Elman network’s
connection weights and thresholds (Fig. 4).

Context nodes

Input nodes

Hidden nodes

Output nodes

…

…

…

…

Fig. 3 Structure of the Elman network

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 852

The operation of the GA-Elman algorithm is

described as follows:
Step 1: Encode the Elman network’s weights and

thresholds.
Step 2: Decode step 1 and compute a different

network from the current population.
Step 3: Train the network with given training

data. If the current network satisfies the problem
requirements, then stop; otherwise, continue to the
next step.

Step 4: Determine the individual fitness by the
objective function and training results, and choose a
number of individuals with the smallest fitness to
inherit to the next generation. The fitness function is
the mean square error (MSE) in this study.

Step 5: Generate a new population by applying
the genetic operators of crossover and mutation to this
intermediate population.

Step 6: Return to step 2 until a certain termination
criterion is met or the maximum training generations.

4 Evaluations and experiments

Experiments were conducted to validate our
modeling strategy in terms of CPU load prediction in
cloud computing. The proposed load predictive ap-
proach was evaluated by using real-world load trace

from the Google Data Center. In 2011, Google pub-
lished a new sample dataset of resource usage infor-
mation from a Google production cluster. This cluster
trace consists of data collected from approximately
12 500 servers which have a 29-day duration and
contain nearly 650 000 jobs (Reiss et al., 2012). By
leveraging Google’s machine event trace which con-
tains each host’s capacity (re-scaled), we collected
about a week’s data, and calculated 600 000 relative
CPU loads by dividing the absolute values according
to corresponding capacities (Di et al., 2012b). The
formula for data normalization is

1 1

1
Average CPU load Load ,

C J
j
c

c jC  

  (9)

where C is the total number of running machines at a

given time point, and Load j
c (c=1, 2, …, C) is the jth

task’s CPU load value of one particular running ma-
chine c, which is obtained from dividing the absolute
values by corresponding capacities. We also used a
week’s load from NASA (Duy et al., 2010; Prevost et
al., 2011) to conduct our experiments.

Both the evaluation and comparison of the pro-
posed model for load prediction will be presented to
compare the performance of our prediction strategy
with those of other methods. We evaluated and
compared our prediction method based on two classic
metrics, MSE and the mean absolute error (MAE),
which are defined as follows:

2 2

1 1

ˆMSE () ,
t T t T

t t t
t t

y y y
 

 

   (10)

1

1
ˆMAE ,

t T

t t
t

y y
T





  (11)

where ˆty represents the load prediction value, ty is

the actual measurement, and T is the number of load
time series data points that need to be predicted.

4.1 Model evaluation

For practical resource management in cloud
computing, setting up new VM instances on demand
takes 5–10 min (Li et al., 2010; Islam et al., 2012).
Hence, the resource management middleware needs
to request new virtual instances about 10 min earlier
to accommodate increased resource requirement in

Initialize the Elman network topology

Encode chromosomes as the weights
and thresholds of the Elman network

Decode chromosomes as the weights
and thresholds of the Elman network

Train the network and computing the
fitness (MSE) of each chromosome

Termination criterion
reached?

Best fitness chromosome
representing optimized

weights and thresholds for
the Elman network

Yes

No
Selection

Crossover

Mutation

GA
operations

New
population

Fig. 4 GA-optimized Elman network

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 853

the cloud. The one-step-ahead prediction interval T in
our experiment was set to 300 data points (5 min), i.e.,
h=300, and the number of output layer nodes of the
Elman network was also 300. As described in Section
2.2, we should determine the best value of γ, that is,
the optimal number of input layer nodes for the Elman
network. We applied FSOSW to extract load subse-
quences with different lengths from the historical data
and trained the network by using the whole load trace
without clustering. The maximum number of itera-
tions for GA was 20, and the maximum number of
epochs for the Elman network was 1500, because in
all of our experiments, GA and the Elman network
reached their own convergence status before those
maximum numbers of epochs. These numbers are
also the termination criteria and experimental pa-
rameter setting, respectively, for the next experiments.
Table 1 presents the training MSE of different γ’s.

Table 1 shows that when γ increased, the training

errors of both datasets increased. The best value of γ
in our experiment was 1, i.e., d=h=300, and the
number of output layer nodes was also 300. Next, we
used the proposed unsupervised HMM clustering to
find the optimal number of clusters and the best
HMM state for each cluster. Fig. 5 shows the char-
acteristics of the AIC measure for clustering the par-
tition model selection by using historical load data.

As the cluster number increases, the log-
likelihood value and the penalty increase monotoni-
cally. AIC increased initially as the cluster number
increased until it reached a peak value and then began
to decrease because of the trade-off between the log-
likelihood term and the model complexity penalty
term. AIC reached the peak when the number of
clusters was four for the Google trace and five for the
NASA trace, which means the best partitions that can
represent data structure were four and five clusters for
the Google and NASA traces in our experiments,
respectively. After cluster number selection, the

proposed unsupervised method needs to find the best
HMM state for each cluster. In this procedure, BIC
was used to seek the optimal HMM state for each
cluster. The final transition matrices of the clusters are
shown in Table 2.

Table 1 Training MSE of different γ’s

MSE
γ

Google NASA
1 0.0311 0.0342
2 0.0395 0.0467
3 0.0455 0.0703
4 0.0639 0.0481
5 0.0772 0.1135
6 0.0924 0.1597

Table 2 The transition matrix of each cluster

Transition
matrix

Google NASA

1HMMA
0.6178 0.3822

0.4119 0.5881

 
 
 

0.8147 0.1853

0.2019 0.7981

 
 
 

2HMMA

0.4019 0.2372 0.3609

0.3721 0.4683 0.1596

0.3561 0.2174 0.4265

 
 
 
 
 

0.6324 0.2100 0.1576

0.0975 0.7505 0.1520

0.2085 0.2446 0.5469

 
 
 
 
 

3HMMA
0.6379 0.2585 0.1036

0.3210 0.5255 0.1535

0.2553 0.1521 0.5926

 
 
 
 
 

0.5146 0.4854

0.4218 0.5782

 
 
 

4HMMA
0.5161 0.4839

0.3785 0.6215

 
 
 

0.6078 0.3922

0.4118 0.5882

 
 
 

5HMMA NULL

0.5519 0.1712 0.2769

0.1545 0.7075 0.1380

0.3018 0.1034 0.5948

 
 
 
 
 

N
um

er
ic

al
 v

al
ue

 (
×

10
5
)

(a)

N
um

er
ic

al
 v

al
ue

 (
×

10
5
)

(b)

Fig. 5 AIC measure for model selection of the Google
trace (a) and NASA trace (b)

0 2 4 6 8 10

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Number of clusters

0 2 4 6 8 10

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

Number of clusters

 AIC
 Log-likelihood
 Penalty

AIC
Log-likelihood
Penalty

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 854

Table 3 reports the HMM log-likelihood value of
the current load subsequence from every cluster, as
well as the number of load subsequences in each
cluster.

Table 3 shows that the maximum log-likelihood

value was from HMM3 and HMM2 for the Google and
NASA traces, respectively, which means that load
subsequences in clusters 3 and 2 were most similar to
their current loads. These load subsequences will be
fed into the GA-Elman network as training data to
forecast future load in cloud. The final step of our
model evaluation was to find the optimal number of
hidden layer nodes for the Elman network. No exist-
ing approach or rule was available to search for the
best hidden layer nodes. Duy et al. (2011) employed
artificial neural networks to forecast the host load on
computational grids. They followed the trial-and-
error method for obtaining the optimal network ar-
chitecture by testing several numbers of hidden layer
nodes, which could promise both high performance
and low overhead. Hence, we tested different num-
bers of hidden layer nodes and empirically chose the
best one with the minimum training MSE. Table 4
illustrates the MSE results of the different numbers of
hidden layer nodes. The optimal numbers of hidden
layer nodes were 35 and 30 for the Google and NASA
traces, respectively.

After load subsequence clustering and optimal
Elman network structure determination, the proposed
prediction model HGE was employed to forecast
future load from a historical trace. Fig. 6 displays the
prediction results of our model. The predicted load
was very close to the actual load, which demonstrates
the effectiveness of the method. In the next subsection,
we will make a comprehensive comparison between
HGE and other prediction models.

4.2 Comparison with other prediction models

In this subsection, we implemented other time
series prediction algorithms, including GM(1, 1), auto
regression (AR, of order 9), moving average (MA),
exponential smoothing (ES, with α=0.5), BP neural
network, the recently proposed polynomial fitting (PF)
(Zhang et al., 2006), and ANFIS (Atique and Ali,
2007), for a comprehensive comparison with our
HGE prediction model. We compared the models
using the parameters that give the best prediction
performance for every model. The predictive models
were divided into two categories. GM, AR, MA, and
ES belong to the first category. These are traditional
prediction models that will be adopted to directly

Table 3 Log-likelihood of each HMM for current load

Number of load
subsequences

 Log-likelihood
HMM

Google NASA Google NASA

HMM1 18 346 −307 −324

HMM2 996 708 −320 −286

HMM3 856 102 −293 −357

HMM4 130 169 −385 −318

HMM5 NULL 675 NULL −302

Table 4 Training MSE of various numbers of hidden
layer nodes

MSE Number of nodes
in the hidden layer Google NASA

15 0.0461 0.0491
20 0.0412 0.0424
25 0.0320 0.0399
30 0.0303 0.0317
35 0.0294 0.0362
40 0.0376 0.0388
45 0.0404 0.0416

0 50 100 150 200 250 300

0.00

0.05

0.10

0.15

0.20

0.25

 L
oa

d

Measurement

 Actual load
 Prediction load

(a)

0 50 100 150 200 250 300

0

2

4

6

8

10

L
oa

d

Measurement

 Actual load
 Predicted load

(b)

Fig. 6 Load prediction results of the Google trace (a) and
NASA trace (b)

Actual load
Predicted load

Actual load
Predicted load

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 855

forecast future cloud computing load from historical
load time series data without clustering. BP neural
network, PF, and ANFIS, which are state-of-the-art
prediction methods that forecast future load, belong to
the second category.

First, we conducted one-step-ahead load predic-
tion. Table 5 reports the MSE and MAE results of all
the prediction methods. As shown in Table 5, our
prediction model showed advantages over the tradi-
tional models. MSE was several times smaller than
those of traditional models. The PF, ANFIS, and HGE
models exhibited similar forecasting accuracies and
performed better than the BP neural network. Hence,
GA improves the performance of the Elman network.

To further evaluate the forecasting performance
of the HGE model, we tested the performance of our
model by performing iterative multi-step-ahead pre-
diction based on one-step-ahead prediction. Fig. 7
shows the comparative MAE results of HGE and
other models by performing steps 2 to 6 in the opera-
tion of the GA-Elman algorithm. Table 6 shows the
corresponding MSE results. As the prediction step
increases, the prediction errors of all models in-
creased. Our model’s prediction error remained ac-
ceptable, which indicates its effectiveness and stable
performance. Compared with traditional prediction
models, our model’s superior prediction ability was
apparent. The HGE model had far lower prediction
errors than traditional models. Models in the second
category were effective in dynamic time series data
prediction and had lower prediction errors than mod-
els in the first category. In most situations, our pro-
posed model outperformed both the first and second
category models. As shown in Fig. 7, from two to six
iterative prediction steps, the MAEs of our model
were 0.036 to 0.067 and 0.358 to 0.559 for the Google
and NASA traces, respectively.

4.3 Computational cost

In practical applications, the running time of
a prediction model is a significant issue. In this

Table 5 MSE and MAE results of one-step-ahead prediction

MSE MAE Prediction
model Google NASA Google NASA

AR 0.071 0.083 0.075 0.965

MA 0.092 0.107 0.083 1.174

ES 0.067 0.080 0.074 0.828

GM 0.083 0.095 0.097 1.227

BP 0.046 0.048 0.049 0.467

PF 0.039 0.044 0.036 0.412

ANFIS 0.035 0.037 0.035 0.336

HGE 0.029 0.032 0.031 0.294

Fig. 7 Mean absolute error results of iterative multi-step-ahead prediction for Google trace (a–b) and NASA trace (c–d)

0.00

0.05

0.10

0.15

0.20

0.25

2 3 4 5 6

Prediction step

M
A

E

GM AR MA ES HGE(a)

0.00

0.02

0.04

0.06

0.08

0.10

2 3 4 5 6
Prediction step

M
A

E

BP PF ANFIS HGE(b)

0.0

0.4

0.8

1.2

1.6

2.0

2 3 4 5 6

Prediction step

M
A

E

GM AR MA ES HGE(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6
Prediction step

M
A

E

BP PF ANFIS HGE(d)

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 856

subsection, the computational cost of our load pre-
diction model is given. In our approach, HMM based
unsupervised clustering can be done offline. Newly
arriving data will be added and processed incremen-
tally. For Google and NASA traces with 600 000 time
series data points, after FSOSW based load subse-
quence extraction, the HMM based clustering time for
Google and NASA traces were 8.7 s and 9.3 s, re-
spectively. Therefore, the prediction time of the GA-
Elman network is what we are mostly concerned
about. Our experiments were conducted on a com-
puter equipped with an Intel i3 2.20 GHz CPU. The
prediction time of our model is shown in Table 7.

The prediction time of AR, MA, ES, and GM
was much longer than that of BP, PF, ANFIS, and
HGE, because AR, MA, ES, and GM use the whole
trace to predict future load, whereas BP, PF, ANFIS,
and HGE apply only a certain part of the load trace.
Compared with BP, PF, and ANFIS, our model had a
longer prediction time, because GA requires a little
more time to optimize the Elman network. However,
the prediction time of HGE remained acceptable.

5 Conclusions

Our study is a contribution to short-term load
prediction modeling in a cloud computing environ-
ment. The present approach represents the scheme of
the hybrid system, which combines the unsupervised
HMM clustering algorithm and genetic algorithm
optimized Elman network. First, historical load time
series data from the cloud computing platform is
divided into small subsequences, and then we use the
unsupervised HMM clustering method to put the
similar subsequences together according to the dis-
tance between them. Second, we employ a genetic
algorithm optimized Elman network to forecast the
future load from the cluster with the maximum log-
likelihood for the current load. We evaluated our
model using load from a real world cloud computing
trace. Experimental results show that our model out-
performs other algorithms for dynamic cloud load
prediction. In future work, we plan to consider the
correlation between CPU, memory, and disk and
make a multivariate prediction for better resource
management in a cloud computing platform.

References
Andersson, S., Yamagishi, J., Clark, R.A.J., 2012. Synthesis

and evaluation of conversational characteristics in HMM-
based speech synthesis. Speech Commun., 54(2):175-188.
[doi:10.1016/j.specom.2011.08.001]

Arasu, A., Manku, G.S., 2004. Approximate Counts and
Quantiles over Sliding Windows. 23rd ACM SIGMOD-
SIGACT-SIGART Symp. on Principles of Database
Systems, p.286-296. [doi:10.1145/1055558.1055598]

Ardagna, D., Casolari, S., Colajanni, M., Panicucci, B., 2012.
Dual time-scale distributed capacity allocation and load
redirect algorithms for cloud systems. J. Parall. Distr.
Comput., 72(6):796-808. [doi:10.1016/j.jpdc.2012.02.014]

Table 7 Running time of all prediction models

Prediction time (s) Prediction
model Google NASA

AR 154 152

MA 132 128

ES 147 140

GM 159 149

BP 38 32

PF 41 36

ANFIS 58 55

HGE 68 64

For all the prediction models, data size is 600 000 and prediction
size is 300

Table 6 MSE results of multi-step-ahead prediction for steps 2–6

MSE

Google NASA
Prediction

model
2 3 4 5 6 2 3 4 5 6

AR 0.076 0.082 0.085 0.093 0.104 0.087 0.094 0.097 0.104 0.111

MA 0.088 0.092 0.102 0.107 0.112 0.101 0.103 0.110 0.116 0.121

ES 0.073 0.075 0.084 0.095 0.106 0.086 0.091 0.095 0.101 0.108

GM 0.099 0.103 0.108 0.117 0.125 0.114 0.116 0.123 0.128 0.135

BP 0.050 0.053 0.059 0.064 0.070 0.052 0.062 0.070 0.077 0.085

PF 0.046 0.052 0.062 0.068 0.077 0.049 0.056 0.068 0.079 0.093

ANFIS 0.037 0.040 0.047 0.053 0.061 0.041 0.047 0.053 0.060 0.066

HGE 0.034 0.042 0.045 0.049 0.056 0.036 0.043 0.046 0.057 0.061

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 857

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H.,
Konwinski, A., Lee, G., Patterson, D.A., Rabkin, I.S.A.,
Zaharia, M., 2009. Above the Clouds: a Berkeley View of
Cloud Computing. Available from http://www.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

Atique, M., Ali, M.S., 2007. A Novel Adaptive Neuro Fuzzy
Inference System Based CPU Scheduler for Multimedia
Operating System. Int. Conf. on Neural Networks,
p.1002-1007. [doi:10.1109/IJCNN.2007.4371095]

Bauer, E., Adams, R., 2012. Reliability and Availability of
Cloud Computing. Wiley-IEEE Press, New Jersey, USA.

Bennani, M.N., Menasce, D.A., 2005. Resource Allocation for
Autonomic Data Centers Using Analytic Performance
Models. 2nd IEEE Int. Conf. on Autonomic Computing,
p.229-240. [doi:10.1109/ICAC.2005.50]

Benson, T., Akella, A., Maltz, D.A., 2010. Network Traffic
Characteristics of Data Centers in the Wild. 10th ACM
SIGCOMM Conf. on Internet Measurement, p.267-280.
[doi:10.1145/1879141.1879175]

Bilmes, J., 1997. A Gentle Tutorial on the EM Algorithm and
Its Application to Parameter Estimation for Gaussian
Mixture and Hidden Markov Models. Technical Report
ICSI-TR-97-02, University of Berkeley, CA.

Bozdogan, H., 1987. Model selection and Akaike’s informa-
tion criterion (AIC): the general theory and its analytical
extensions. Psychometrika, 52(3):345-370. [doi:10.1007/
BF02294361]

Burnham, K.P., Anderson, D.R., 2004. Multimodel inference
understanding AIC and BIC in model selection. Sociol.
Methods Res., 33(2):261-304. [doi:10.1177/0049124104
268644]

Calheiros, R.N., Ranjan, R., Buyya, R., 2011. Virtual Machine
Provisioning Based on Analytical Performance and QoS
in Cloud Computing Environments. Int. Conf. on Parallel
Processing, p.295-304. [doi:10.1109/ICPP.2011.17]

Caron, E., Desprez, F., Muresan, A., 2010. Forecasting for
Grid and Cloud Computing On-Demand Resources Based
on Pattern Matching. 2nd IEEE Int. Conf. on Cloud
Computing Technology and Science, p.456-463. [doi:10.
1109/CloudCom.2010.65]

Di, S., Kondo, D., Cirne, W., 2012a. Characterization and
Comparison of Cloud versus Grid Workloads. IEEE Int.
Conf. on Cluster Computing, p.230-238. [doi:10.1109/
CLUSTER.2012.35]

Di, S., Kondo, D., Cirne, W., 2012b. Host Load Prediction in a
Google Compute Cloud with a Bayesian Model. IEEE Int.
Conf. on High Performance Computing, Networking,
Storage and Analysis, p.1-11. [doi:10.1109/SC.2012.68]

Duy, T.V.T., Sato, Y., Inoguchi, Y., 2010. Performance Evalu-
ation of a Green Scheduling Algorithm for Energy Sav-
ings in Cloud Computing. IEEE Int. Symp. on Parallel &
Distributed Processing, Workshops and PhD Forum,
p.1-8. [doi:10.1109/IPDPSW. 2010.5470908]

Duy, T.V.T., Sato, Y., Inoguchi, Y., 2011. Improving accuracy
of host load predictions on computational grids by artifi-
cial neural networks. Int. J. Parall. Emerg. Distr. Syst.,

26(4):275-290. [doi:10.1080/17445760.2010.481786]
Elman, J., 1990. Finding structure in time. Cogn. Sci., 14(2):

179-211. [doi:10.1207/s15516709cog1402_1]
Hassan, M.R., Nath, B., Kirley, M., 2007. A fusion model of

HMM, ANN and GA for stock market forecasting. Expert
Syst. Appl., 33(1):171-180. [doi:10.1016/j.eswa.2006.04.
007]

Hassan, R., Nath, B., Kirley, M., Kamruzzaman, J., 2012. A
hybrid of multiobjective evolutionary algorithm and
HMM-fuzzy model for time series prediction. Neuro-
computing, 81:1-11. [doi:10.1016/j.neucom.2011.09.012]

Hirose, A., 2012. Complex-Valued Neural Networks, Vol. 400.
Springer, New York, Dordrecht, Heidelberg, London.

Islam, S., Keung, J., Lee, K., Liu, A., 2012. Empirical predic-
tion models for adaptive resource provisioning in the
cloud. Future Gener. Comput. Syst., 28(1):155-162. [doi:
10.1016/j.future.2011.05.027]

Kaur, P., Soni, A.K., Gosain, A., 2013. A robust kernelized
intuitionistic fuzzy c-means clustering algorithm in seg-
mentation of noisy medical images. Pattern Recogn. Lett.,
34(2):163-175. [doi:10.1016/j.patrec.2012.09.015]

Khan, A., Yan, X., Tao, S., Anerousis, N., 2012. Workload
Characterization and Prediction in the Cloud: a Multiple
Time Series Approach. 3rd IEEE Int. Workshop on Cloud
Management, p.1287-1294. [doi:10.1109/NOMS.2012.
6212065]

Khashei, M., Zeinal Hamadani, A., Bijari, M., 2012. A novel
hybrid classification model of artificial neural networks
and multiple linear regression models. Expert Syst. Appl.,
39(3):2606-2620. [doi:10.1016/j.eswa.2011.08.116]

Li, A., Yang, X., Kandula, S., Zhang, M., 2010. CloudCmp:
Comparing Public Cloud Providers. 10th ACM SIG-
COMM Conf. on Internet Measurement, p.1-14. [doi:10.
1145/1879141.1879143]

Liang, K.C., Wang, X.D., Anastassiou, D., 2007. Bayesian
basecalling for DNA sequence analysis using hidden
Markov models. IEEE Trans. Comput. Biol. Bioinf., 4(3):
430-440. [doi:10.1109/tcbb.2007.1027]

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.,
2011. Cloud computing: the business perspective. Decis.
Support Syst., 51(1):176-189. [doi:10.1016/j.dss.2010.12.
006]

Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R., 2010.
Towards characterizing cloud backend workloads: in-
sights from Google compute clusters. ACM SIGMETRICS
Perform. Eval. Rev., 37(4):34-41. [doi:10.1145/1773394.
1773400]

Niu, D.X., Kou, B.E., Zhang, Y.Y., 2009. Mid-long Term Load
Forecasting Using Hidden Markov Model. 3rd Int. Symp.
on Intelligent Information Technology Application,
p.481-483. [doi:10.1109/IITA.2009.422]

Palit, A.K., Popovic, D., 2005. Computational Intelligence in
Time Series Forecasting: Theory and Engineering Ap-
plications. In: Advances in Industrial Control. Springer-
Verlag New York, Inc., Secaucus, NJ.

Prevost, J.J., Nagothu, K., Kelley, B., Jamshidi, M., 2011.
Prediction of Cloud Data Center Networks Loads Using

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(11):845-858 858

Stochastic and Neural Models. 6th Int. Conf. on System
of Systems Engineering, p.276-281. [doi:10.1109/

SYSOSE.2011.5966610]
Rabiner, L.R., 1989. A tutorial on hidden Markov models and

selected applications in speech recognition. Proc. IEEE,
77(2):257-286. [doi:10.1109/5.18626]

Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch,
M.A., 2012. Towards Understanding Heterogeneous
Clouds at Scale: Google Trace Analysis. Proc. 3rd ACM
Symp. on Cloud Computing, p.7.

Saripalli, P., Kiran, G.V.R., Shankar, R.R., Narware, H., Bindal,
N., 2011. Load Prediction and Hot Spot Detection Models
for Autonomic Cloud Computing. 4th IEEE Int. Conf. on
Utility and Cloud Computing, p.397-402. [doi:10.1109/

UCC.2011.66]
Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.,

2009. A break in the clouds: towards a cloud definition.
ACM SIGCOMM Comput. Commun. Rev., 39(1):50-55.
[doi:10.1145/1496091.1496100]

Wang, P., Wang, H., Wang, W., 2011. Finding Semantics in
Time Series. ACM SIGMOD Int. Conf. on Management
of Data, p.385-396. [doi:10.1145/1989323.1989364]

Weakliem, D.L., 1999. A critique of the Bayesian information
criterion for model selection. Sociol. Methods Res., 27(3):
359-397. [doi:10.1177/0049124199027003002]

Yu, L., Wang, S., Lai, K.K., 2008. Credit risk assessment with
a multistage neural network ensemble learning approach.
Expert Syst. Appl., 34(2):1434-1444. [doi:10.1016/j.eswa.
2007.01.009]

Zhang, G.P., 2003. Time series forecasting using a hybrid
ARIMA and neural network model. Neurocomputing,
50:159-175. [doi:10.1016/S0925-2312(01)00702-0]

Zhang, Y., 2004. Prediction of Financial Time Series with
Hidden Markov Models. PhD Thesis, Simon Fraser
University, Burnaby, Canada.

Zhang, Y., Sun, W., Inoguchi, Y., 2006. CPU Load Predictions
on the Computational Grid. 6th IEEE Int. Symp. on
Cluster Computing and the Grid, p.321-326. [doi:10.
1109/CCGRID.2006.27]

JZUS-C has been covered by SCI-E since 2010

Online submission: http://www.editorialmanager.com/zusc/

Welcome Your Contributions to JZUS-C

Journal of Zhejiang University-SCIENCE C (Computers & Electronics), split from Journal of

Zhejiang University-SCIENCE A, covers research in Computer Science, Electrical and Electronic En-

gineering, Information Sciences, Automation, Control, Telecommunications, as well as Applied Ma-

thematics related to Computer Science. JZUS-C has been accepted by Science Citation Index-Expanded

(SCI-E), Ei Compendex, INSPEC, DBLP, Scopus, IC, JST, CSA, etc. Warmly and sincerely welcome

scientists all over the world to contribute Reviews, Articles, Science Letters, Reports, Technical notes,

Communications, and Commentaries.

SCIENCE C (Computers & Electronics)
Journal of Zhejiang University

Editor-in-Chief: Yun-he PAN
ISSN 1869-1951 (Print), ISSN 1869-196X (Online), monthly

www.zju.edu.cn/jzus; www.springerlink.com

