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Abstract: In this study, a two-hop wireless sensor network with multiple relay nodes is considered where the
amplify-and-forward (AF) scheme is employed. Two algorithms are presented to jointly consider interference
suppression and power allocation (PA) based on the minimization of the symbol error rate (SER) criterion. A
stochastic gradient (SG) algorithm is developed on the basis of the minimum-SER (MSER) criterion to jointly
update the parameter vectors that allocate the power levels among the relay sensors subject to a total power
constraint and the linear receiver. In addition, a conjugate gradient (CG) algorithm is developed on the basis
of the SER criterion. A centralized algorithm is designed at the fusion center. Destination nodes transmit the
quantized information of the PA vector to the relay nodes through a limited-feedback channel. The complexity and
convergence analysis of the proposed algorithms are carried out. Simulation results show that the proposed two
adaptive algorithms significantly outperform the other previously reported algorithms.
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1 Introduction

Nowadays, because of the low cost, scalability,
and robustness, the wireless sensor networks (WSNs)
which allow a wide range of applications in the areas
of defence, environment, health, and domestic use
have received significant attention (Akyildiz et al.,
2002). WSNs usually deploy geographically dis-
tributed sensor nodes to transmit their data to the
desired destination through multihop relays (Lane-
man et al., 2004). The sensors typically have limited
communication capability and energy resources in
the network. Usually, each sensor in the WSNs pro-
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duces a local analog or digital signal after making
an observation of the desired signal, and then sends
the information to the fusion center which combines
the received sensor quantity to generate a final esti-
mate of the observed information. Recently, many
different relay transmission techniques have been de-
veloped, such as amplify-and-forward (AF), decode-
and-forward (DF), and compress-and-forward (CF)
(Laneman et al., 2004; Kramer et al., 2005; Rui,
2010). In fact, the use of spatial diversity with co-
operation among the nodes can significantly enhance
the performance and capacity of WSNs (Laneman et
al., 2004; Clarke and de Lamare, 2011; 2012).

Adaptive signal processing is of great impor-
tance in the modern information society, and it
has been widely used in communication systems (de
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Lamare and Sampaio-Neto, 2003; Li and Hamouda,
2007; Chen et al., 2011). Most of the existing adap-
tive detection methods are based on the minimum
mean square error (MMSE) criterion for wireless
communications (Verdu, 1998; Wang T et al., 2012).
However, MMSE is not the most appropriate met-
ric in digital communication systems since it has
been recognized that the method which minimizes
the MSE criterion does not necessarily produce the
minimum symbol error rate (MSER) or minimum
bit error rate (MBER) performance. Several adap-
tive detection algorithms based on the minimization
of SER have been proposed and the MSER algorithm
(Chen et al., 2004a; 2008a; 2008b) for adaptive in-
terference suppression techniques is one of the most
successful and suitable approaches.

The popular stochastic gradient (SG) descent
algorithm is a least mean squares (LMS) adaptive
method. The SG method is used to minimize a
cost function with a format of a sum of differentiable
functions. In addition, the conjugate gradient (CG)
method is used mainly for the numerical solution of
particular systems of linear equations. The matrix
in these particular systems is positive-definite and
symmetric. Due to the CG algorithm being an iter-
ative method, it is widely used in the sparse systems
which are difficult to solve by direct techniques such
as the Cholesky decomposition. In addition, the CG
algorithm can be employed to handle unconstrained
optimization problems such as energy minimization
(Straeter, 1971).

The majority of previous literature considers a
scenario in which all nodes use the same power to
transmit signals in the system. Without loss of gen-
erality, this ‘constant power scheme’ employed in real
communication wastes more power than an adaptive
power scheme. To the best of our knowledge, most
of the existing algorithms employed in cooperative
communication systems do not jointly consider the
issues of interference mitigation and power allocation
(PA). However, these two issues play an important
role in sensor networks and ad-hoc wireless coopera-
tive cellular systems (Souryal et al., 2006; Fischione
et al., 2009).

In this study, we consider a two-hop WSN with
multiple relay nodes where the AF scheme is used.
Usually, a large number of densely deployed sens-
ing devices in WSNs can transmit their signal to the
desired user by multihop relays. The most impor-

tant design characteristics of physical-layer methods
employed for WSNs and communication protocols
(Wang Y et al., 2012) are of low complexity and high
energy efficiency. Because of some limitations such
as sensor node power, computational capacity, and
memory, some power-constrained relay methods (Kr-
ishna et al., 2008; Liu et al., 2012) and PA strategies
(Li et al., 2007) have been proposed for WSNs to ob-
tain the best possible quality of service (QoS) at the
destinations. Hence, due to low complexity and low
energy requirements, we propose a joint iterative PA
and interference suppression algorithm on the basis
of the minimization of an symbol error rate (SER)
cost function for WSNs that employ the AF relaying
strategy.

We propose an SG algorithm and a CG algo-
rithm which are derived on the basis of the MSER
expressions to jointly update the parameter vectors
that allocate the power among the relays subject to
a power constraint and the linear receiver. In addi-
tion, feedback PA coefficients are considered in the
two proposed algorithms. Note that both relay nodes
and destination nodes know the codebook designed
off-line. Each destination node selects an index from
the codebook of the quantized PA vector based on
the fusion center estimation, and transmits it to the
relay node through a limited-feedback channel. We
refer to the proposed adaptive joint power alloca-
tion and interference suppression algorithm on the
basis of MSER as JMSER. Simulation results show
that the proposed adaptive algorithms significantly
outperform the other state-of-the-art schemes. The
main contributions of this study are summarized as
follows:

1. On the basis of the minimization of the SER
cost function for WSNs with quadrature phase shift
keying (QPSK) modulation, the theory estimation
algorithm which jointly considers PA and interfer-
ence suppression is proposed.

2. Two sample-by-sample based jointly adaptive
implementations of the theoretical JMSER solution
are developed on the basis of the kernel density esti-
mate of the probability density function (PDF).

3. The analyses of convergence and compu-
tational complexity of the proposed adaptive algo-
rithms are carried out.

The superscripts ‘T’, ‘H’, and ‘*’ denote the
transpose, Hermitian transpose, and elementwise
conjugate, respectively. A bold symbol denotes a
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matrix or a vector. The symbols | · |, ‖ · ‖, �(·), �(·)
sgn(·), diag(·), exp(·), and Prob(·) represent the 2-
norm of a scalar, norm of a vector, real part of a com-
plex number, imaginary part of a complex number,
signum function, diagonal form of a vector, exponen-
tial function, and probability function, respectively.

2 System model and problem state-
ment

In this study, we employ a system model similar
to that introduced by Wang T et al. (2012). Their
work is not an adaptive algorithm which is based
on the MMSE criterion. However, our work focuses
on the minimization of SER rather than MMSE, be-
cause we have known that the method which mini-
mizes the MSE criterion does not necessarily produce
the MSER or MBER performance. This point can
also be proved by Section 6

As shown in Fig. 1, the WSN consists of Ns

source nodes, Nr relay nodes, and Nd destination
nodes. The received signal at the relay nodes can be
expressed as

r = Hsb+ nr, (1)

where Hs denotes the Nr × Ns channel matrix be-
tween the source nodes and relay nodes, and it is
given by [hs,1, hs,2, · · · , hs,Nr ]

T, where hs,r (r =

1, 2, · · · , Nr) is an Ns × 1 vector. The quantity b

denotes the Ns × 1 transmitted QPSK signal vector.
The elements of b are given by ±1 ± j (j2 = −1).
The vector nr is a zero-mean circularly symmetric
complex additive white Gaussian noise (AWGN) vec-
tor with covariance matrix σ2

nI, where I denotes an
identity matrix of appropriate dimension. Next, we
normalize the power of the received signal for each
relay node as follows:

t = Gr, (2)

where

G=diag
(
σ2

b||hs,1||2 + σ2
n, · · · , σ2

b||hs,Nr ||2 + σ2
n

)− 1
2

(3)

is a normalization matrix and σ2
b denotes the power

of each transmitted signal.
The received signal at the destination can be

expressed as

d = HdAt+ nd, (4)

where Hd denotes the Nd × Nr channel matrix be-
tween the relay nodes and destination nodes, given
by [hd,1, hd,2, · · · , hd,Nd ]

T, nd denotes the Nd × 1

destination noise vector with zero mean and covari-
ance matrix σ2

dI, and A = diag(a1, a2, · · · , aNr)

is a diagonal matrix whose element represents the
amplification coefficient of each relay node. Here
we use the property of matrix-vector multiplica-
tion At = Ta in the system expression, where
T = diag(t1, t2, · · · , tNr), t = [t1, t2, · · · , tNr ]

T,
and a = [a1, a2, · · · , aNr ]

T. Hence, we rewrite
Eq. (4) as follows:

d = HdTa+ nd. (5)

...

D1

D2

DN

...

R1

R2

RN

...

S1

S2

SN

...

Feedback channel

Source nodes Relay nodes Destination nodes

s r d

Fig. 1 A two-hop cooperative wireless sensor network

To simplify the derivation of the proposed algo-
rithm in the next section, we employ the preceding
related property of matrix-vector multiplication to
rewrite Eq. (5) as follows:

d = HdGdiag (Hsb)a+HdGNra+ nd, (6)

where Nr is a diagonal matrix form of the relay noise
vector nr. The noise vector has zero mean and co-
variance matrix σ2

r I. Notice that the second and
third parts of Eq. (6) contain the additive noise. A
fusion center which in practice contains the destina-
tion nodes can gather the channel state information
and compute the optimal linear filters and the per-
fect PA vector coefficients. The fusion center can also
send the information of the computed PA coefficients
to relay nodes by a feedback channel.

Finally, the fusion center makes an estimation of
the kth transmitted signal at the destination nodes
as follows:

zk = wH
k d = ẑk + nk, k = 1, 2, · · · , Ns, (7)

where ẑk = wH
k HdGdiag (Hsb)a, nk is a Gaussian

distributed variable with zero mean, wk is an Nd× 1
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complex-valued receiver weight vector, and zk is a
Gaussian distributed variable with a variance of σ2

zk
.

The variance of zk is given by

σ2
zk = σ2

ra
HC

H
k Cka+ σ2

dw
H
k wk. (8)

Let wH
k HdG = ck. Then Ck = diag(ck) denotes the

Nr ×Nr diagonal matrix of vector ck. Without loss
of generality, in this work we assume that the first-
and second-phase noises have the same power, that
is σr = σd. Then, we obtain

σ2
zk = Pkσ

2
d, (9)

where Pk = aHC
H
k Cka+wH

k wk.
The decision regarding the kth transmitted sym-

bol bk is made according to

b̂k = sgn(�(zk)) + jsgn(�(zk)). (10)

3 Problem formulation for the joint
PA-MSER scheme

In this section we jointly consider PA and inter-
ference suppression for the linear multisource trans-
mission scheme, and then derive the theoretical
MSER solution.

Since the WSN employs the QPSK modulation,
we denote bpk for 1 ≤ p ≤ N as a possible transmit-
ted symbol vector, where N = 4Ns/4. The MSER
criterion is used in our proposed algorithm; hence,
the error probability for the kth transmitted signal
can be expressed as (Chen et al., 2008b)

Pe(wk,a) =PER + PEI − PERPEI , (11)

k = 1, 2, · · · ,Ns,

where PER = Prob(yrs < 0), PEI = Prob(yis < 0),
yrs = sgn(�(bpk))�(ẑk) and yis = sgn(�(bpk))�(ẑk).
The subscripts ‘r’ and ‘i’ represent the real and imag-
inary parts of a variable, respectively, and subscript
‘s’ represents the source. We first consider the vari-
ance of the received signal estimation variable zk.
Given bk = +1+ j (k = 1, 2, · · · , Ns), the theoretical
PDF for yrs and yis can be expressed as follows:

p̃(yrs|+ 1 + j)

=
1

N
√
2πPkσd

N∑

p=1

exp

(
− (yrs − sgn[�(bpk)]�(ẑk))2

2σ2
dPk

)
,

(12)

p̃(yis|+ 1 + j)

=
1

N
√
2πPkσd

N∑

p=1

exp

(
− (yis − sgn[�(bpk)]�(ẑk))2

2σ2
dPk

)
.

(13)

The receiver and power allocation vectors wk

and a are defined as the receiving weight vector and
PA vector, respectively. The upper bound of SER is
given by

P̃e(wk,a) = PER + PEI

=
1

N

[
N∑

q=1

Q
(
C̃R(wk,a)

)
+

N∑

q=1

Q
(
C̃I(wk,a)

)]

,

(14)

where

Q(y) =
1√
2π

∫ ∞

y

exp(−x2

2
)dx,

C̃R(wk,a) =
sgn(�(bpk))�(ẑk)

σd
√
Pk

,

C̃I(wk,a) =
sgn(�(bpk))�(ẑk)

σd
√
Pk

.

The solution obtained by minimizing the upper
bound (14) is practically equivalent to that of mini-
mizing (11), since the bound Pe(wk,a) < P̃e(wk,a)

is very tight. That is to say, P̃e(wk,a) is very close
to the true SER Pe(wk,a) (Chen et al., 2008b).

In the WSN, centralized detection is employed
at the receiver end and the overall SER at the re-
ceiver is given by

P̃E(w1,w2, · · · ,wNs ,a) =

Ns∑

k=1

P̃e(wk,a). (15)

The JMSER method can be considered as the
following optimization problem:

(
wJMSER

1 ,wJMSER
2 , · · · ,wJMSER

Ns
,aJMSER)

= arg min
w1,··· ,wNs ,a

P̃E(w1, · · · ,wNs ,a). (16)

Unlike the MMSE solution, it is very difficult
to obtain a closed-form solution for the JMSER
criterion. In this work we propose a jointly iter-
ative optimization approach to obtain the optimal
solution.
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4 Adaptive JMSER algorithm

In this section, we derive the adaptive JMSER
solution for the linear multisource detector and
present two gradient search algorithms to find the
JMSER solution. Here, the first algorithm is based
on the SG method which is a gradient descent opti-
mization method for minimizing a sum of differen-
tiable objective functions. The second algorithm is
based on the CG strategy which is used mainly for
the numerical solution of particular systems of linear
equations. The matrix in these particular systems is
positive-definite and symmetric. In addition, we in-
troduce the channel estimation algorithm employed
in this work. In reality, the PDFs of yrs and yis are
unknown. We adopt the temporal reference tech-
nique here to support the adaptive implementation
of the JMSER technique.

4.1 SG-based adaptive JMSER algorithm

Effectively estimating the PDF is of great im-
portance in adaptive implementation for the JMSER
filtering design. We use the MSER criterion in
our proposed algorithm. The error probability for
the kth transmitted signal can be approximately ex-
pressed as follows:

P̄e(wk,a) =Prob(yr < 0) + Prob(yi < 0), (17)

k = 1, 2, · · · , Ns,

where yr = sgn(�(bk))�(zk), yi = sgn(�(bk))�(zk).
This algorithm employs kernel density estima-

tion (Silerman, 1996; Bowman and Azzalini, 1997;
Chen et al., 2004b), which can produce reliable PDF
estimation with a short data record. In our appli-
cation, it is obvious and natural to choose a Gaus-
sian kernel function with a kernel width ρ

√
Pk which

is similar in form to the noise standard deviation
σd
√
Pk. Here ρ is the kernel width, working as a

smoothing parameter and having a lower boundary
ρ = ( 4

3N )
1
5 σd (Silerman, 1996).

A single-sample ‘estimate’ for PDFs p(yr|+1+j)
and p(yi| + 1 + j) is adopted to derive a sample-by-
sample adaptive algorithm, namely

p(yr|+ 1 + j)

=
1√

2πPkρ
exp

(
− (yr − sgn(�(bk))�(zk))2

2ρ2Pk

)
,

(18)

p(yi|+ 1 + j)

=
1√

2πPkρ
exp

(
− (yi − sgn(�(bk))�(zk))2

2ρ2Pk

)
. (19)

Then the estimation of the error probability can
be given by

P̄e(wk,a) = Prob(yr < 0) + Prob(yi < 0)

= Q (CR(wk,a)) +Q (CI(wk,a)) , (20)

where

CR(wk,a) =
sgn(�(bk))�(zk)

ρ
√
Pk

,

CI(wk,a) =
sgn(�(bk))�(zk)

ρ
√
Pk

.

The JMSER approach can be reorganized as the
following optimization problem:

(
wJMSER

1 ,wJMSER
2 , · · · ,wJMSER

Ns
,aJMSER)

= arg min
w1,··· ,wNs ,a

P̄E(w1, · · · ,wNs ,a), (21)

where P̄E(w1, · · · ,wNs ,a) =
∑Ns

k=1 P̄e(wk,a) de-
notes the overall error probability that Ns source
signals which need to be detected are contained.

The following SG algorithm (Haykin, 2002) can
be used to find the MSER solution:

wk(n+ 1) =wk(n)− μwJS

∂P̄E(w1, · · · ,wNs ,a)

∂w∗
k

,

k = 1, 2, · · · , Ns, (22)

a(n+ 1) = a(n)− μaJS

∂P̄E(w1, · · · ,wNs ,a)

∂a
,

(23)

where n indicates the snapshot (received symbol in-
dex), and μwJS , μaJS are step sizes. By following
the same approach, we have the expressions of the
gradients as follows:

∇P̄E(wk) =− 1

2
√
2πρ

sgn(�(bk))exp
(

− (�(zk))2
2ρ2Pk

)

uk

− 1

2
√
2πρ

sgn(�(bk))exp
(

− (�(zk))2
2ρ2Pk

)

vk,

∇P̄E(a)=−
Ns∑

k=1

1

2
√
2πρ

sgn(�(bk))exp
(
− [�(zk)]2

2ρ2Pk

)
ũk

−
Ns∑

k=1

1

2
√
2πρ

sgn(�(bk))exp
(
− [�(zk)]2

2ρ2Pk

)
ṽk,
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where

uk =
d√
Pk

− �(zk)(wk +HdGAAHcH
k )

(
√
Pk)3

,

vk = − jd√
Pk

+
�(zk)(wk +HdGAAHcH

k )

(
√
Pk)3

,

ũk =
THHH

d wk√
Pk

− C
H
k Cka�(zk)
(
√
Pk)3

,

ṽk = − jTHHH
d wk√
Pk

+
C

H
k Cka�(zk)
(
√
Pk)3

.

We have noticed that the decision boundary and
SER really matter in the orientation of wk instead of
the size of wk. Hence, it is computationally advan-
tageous to normalize wk to a unit length after each
iteration (Wang et al., 2000):

wk(n+ 1)← wk(n+ 1)
√

wH
k (n+ 1)wk(n+ 1)

. (24)

The vector a must be restricted by the to-
tal power constraint, which is described as aH

k (n +

1)a(n + 1) ≤ Pr, where Pr is the total power for all
relays. In this work, we use the following procedure
to scale the power vector among the relay nodes at
each iteration:

a(n+ 1)←
√
Pr

a(n+ 1)
√
aH(n+ 1)a(n+ 1)

. (25)

In this algorithm, the step sizes μwJS , μaJS ,
and kernel standard variance ρ should be chosen
appropriately to achieve a desired convergence per-
formance, in terms of both convergence speed and
steady-state SER misadjustment. The algorithm is
summarized in Algorithm 1.

4.2 CG-based adaptive JMSER algorithm

The CG method is implemented to minimize
the cost function by searching for the optimal weight
solution along a special direction (Boray and Sri-
nath, 1992). We have known that the directions
are determined sequentially at each iteration rather
than specified beforehand according to some re-
ported schemes. For the CG method, we obtain the
direction by choosing the successive direction vectors
as a conjugate version of the successive gradients ob-
tained as the method progresses.

Algorithm 1 JMSER-SG algorithm
1: Initialize w1,w2, · · · ,wNs ,a. Set μwJS ,

μaJS , and the number of cycles per symbol
2: For each received symbol do
3: For each cycle do
4: For each source transmitted symbol

(k = 1, 2, · · · , Ns)
5: Update wk using Eqs. (22) and (24)
6: End
7: Update a using Eqs. (23) and (25)
8: End
9: End //We obtain w1,w2, · · · ,wNs and a for the

// received symbol and move to the next symbols

The starting point in the derivation is to con-
sider how to minimize the cost function. In general,
there are two steps from wk(n − 1) and a(n− 1) to
wk(n) and a(n), respectively. The first step is to
choose a search direction and the second step is to
implement a line search along the chosen direction.

Here, we start to choose direction vectors
c1(n), c2(n), · · · , cNs(n) and g(n) that indicate the
directions in which wk(n− 1) and a(n− 1) travel to
wk(n) and a(n), respectively. In general, for each
step we choose a point

wk(n+ 1) =wk(n) + μwJCck(n), (26)

k = 1, 2, · · · , Ns,

a(n+ 1) =a(n) + μaJCg(n). (27)

The parameters μwJC and μaJC which control the
rate of convergence, ck(n) and g(n), are direc-
tion vectors, and n is the time index. The pro-
posed algorithm generates a sequence of iterations
wk(1),wk(2), · · · ,wk(n), a(1),a(2), · · · ,a(n) such
that P̄E(n) ≤ P̄E(n− 1) at each step; that is, the so-
lution gets close to the minimum at each step. With-
out loss of generality, we can define this direction
vector as

ck(n+ 1) =φnck(n)−∇P̄E(wk(n+ 1)), (28)

k = 1, 2, · · · , Ns,

g(n+ 1) = ϕng(n)−∇P̄E(a(n+ 1)). (29)

On the basis of the theory of CG algorithms, φn

and ϕn are computed as follows to terminate the
algorithm:

φn =
‖∇P̄E(wk(n+ 1))‖
‖∇P̄E(wk(n))‖ , (30)

ϕn =
‖∇P̄E(a(n+ 1))‖
‖∇P̄E(a(n))‖ . (31)
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Similar to the SG method, we have the expres-
sion of normalization as follows:

wk(n+ 1)← wk(n+ 1)
√

wH
k (n+ 1)wk(n+ 1)

. (32)

Meanwhile, the PA vector a must be restricted by
the total power constraint, the same as the preceding
SG method, i.e., aH

k (n + 1)a(n + 1) ≤ Pr. We also
use the following procedure to scale the power vector
among relay nodes at each iteration:

a(n+ 1)←
√

Pr
a(n+ 1)

√
aH(n+ 1)a(n+ 1)

. (33)

By running simulations, the updated algorithm
is implemented by running multiple cycles over the
recursions for w1,w2, · · · ,wNs ,a. The algorithm is
summarized in Algorithm 2.

Algorithm 2 JMSER-CG algorithm
Step 1: Initialize two step sizes μwJC > 0, μaJC > 0,

set the iteration index to n = 1,
given a(1), w1(1), · · · ,wNs(1),
ci(1) = −∇PE(wi(1)) (i = 1, 2, · · · , Ns),
g(1) = −∇PE(a(1));

Step 2: For k = 1, 2, · · · , Ns:
wk(n+ 1) = wk(n) + μwJCck(n)

wk(n+ 1)← wk(n+1)
‖wk(n+1)‖

φn = ‖∇PE(wk(n+1))‖
‖∇PE(wk(n))‖

ck(n+ 1) = φnck(n)−∇PE(wk(n+ 1))

k = k + 1

Step 3: After Ns iterations:
a(n+ 1) = a(n) + μaJCg(n)

β =
√

Pr
‖a(n+1)‖2

a(n+ 1)← βa(n+ 1)

ϕn = ‖∇PE(a(n+1))‖
‖∇PE(a(n))‖

g(n+ 1) = ϕng(n)−∇PE(a(n+ 1))

n = n+ 1

4.3 Channel estimation

In this part, we introduce the channel estima-
tion method of this work. A similar SG method is
employed to estimate the information of the chan-
nel. In the following, we focus on the estimation of
channel Hd (Karami, 2007). Straightforwardly, the
estimation of channel Hs is obtained by the same
approach.

Recall Eq. (6), and we have noticed that the
second and third parts are the noise counter parts.

Hence, to simplify the derivation, we can rewrite the
Nd × 1 received vector d as follows:

d = HdGAHsb+ n, (34)

where n denotes the noise embedded in the received
signal.

The channel estimation problem is formulated
as follows:

Ĥd = argmin
Hd

E[‖d−HdGAHsb‖2]. (35)

Using an SG recursion to solve the preceding
problem (Haykin, 2002), the gradient of Ĥd is given
by

∇Ĥd(Hd) = (HdGAHsb− d)bHHH
s AHGH. (36)

Hence, we have the estimation expression for
channel Ĥd:

Ĥd(n+ 1) (37)

= Ĥd(n) + μh(d −Hd(n)GAHsb)b
HHH

s AHGH,

where μh is a step size. The channel algorithm is im-
plemented using Eq. (37) with initial values. This al-
gorithm jointly estimates the coefficients of the chan-
nels across all the links and for all relay nodes subject
to a total power constraint.

5 Analysis of the proposed algorithms

In this section, we analyze the computational
complexity and the convergence of the proposed
algorithms.

5.1 Computational complexity analysis

We describe the computational complexity of
the proposed JMSER algorithm in WSNs. Table 1
lists the computational complexity per iteration in
terms of the numbers of multiplications and addi-
tions for JMSER-SG and JMSER-CG algorithms
with joint linear receiver design and PA strategies,
the LMS algorithm with fixed PA, and the MSER al-
gorithm with fixed PA. The fixed PA schemes employ
equal power for the relay nodes. Note that for the
configuration with Ns = 2 and Nd = 20, the num-
bers of multiplications of the receiver for JMSER-SG,
JMSER-CG, MSER, and LMS are given by 161, 241,
161, and 81, respectively. The numbers of additions
for them are 160, 200, 160, and 80, respectively. The
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numbers of multiplications and additions of the PA
vector for JMSER-SG and JMSER-CG are 161 and
201, respectively. The numbers of additions of the
PA vector for JMSER-SG and JMSER-CG are 160
and 200, respectively. The number of multiplications
of the weight vector for the JMSER-SG algorithm is
equal to that for the MSER algorithm with fixed
PA schemes. In general, compared to the LMS and
MSER algorithms both with fixed PA, the total com-
putational complexity of the JMSER-SG algorithm
and JMSER-CG algorithm is slightly increased. In
the simulations, we will show that the proposed al-
gorithms significantly outperform the existing algo-
rithms with slightly increased complexity.

Table 1 Computational complexity of the analyzed
algorithms

Parameter Algorithm Multiplication Addition

wk

JMSER-CG 6NsNd + 1 5NsNd
JMSER-SG 4NsNd + 1 4NsNd
MSER fixed 4NsNd + 1 4NsNd
LMS fixed 2NsNd + 1 2NsNd

a
JMSER-CG 5NsNd + 1 5NsNd
JMSER-SG 4NsNd + 1 4NsNd

Ns: number of source nodes; Nd: number of destination nodes

5.2 Sufficient conditions for convergence

The proposed algorithms have two vectors,
weight vector and PA vector. So, to develop the
analysis and proofs, we need to define a metric space
and the Hausdorff distance that will extensively be
used. A metric space is an ordered pair (S, D), where
S is a nonempty set, and D is a metric on S, that is a
function D : S×S → R such that for any a, b, c ∈ S,
the following conditions hold:

D(a, b) ≥ 0, D(a, b) = 0 iff a = b, D(a, b) =

D(b, a), and D(a, c) ≤ D(a, b) +D(b, c).

The Hausdorff distance measures how far two
subsets of a metric space are from each other and is
defined by

DH(A,B) = max

{
sup
a∈A

inf
b∈B

D(a, b), sup
b∈B

inf
a∈A

D(a, b)

}
.

(38)

Here we first define W = [w1,w2, · · · ,wNs ] to
simplify the analysis. It is noticed that W , a ⊂
S. The proposed JMSER designs can be stated as
an alternating minimization strategy on the basis of

MSER, expressed as

Wn ∈ min
W∈Wn

P̄E(W ,an−1), (39)

an ∈ min
a∈an

P̄E(Wn,a), (40)

where the sequences of compact sets {W n}n≥0 and
{an}n≥0 converge to the sets W and a, respec-
tively. Although W and a are not given directly, we
have the sequences of compact sets {W n}n≥0 and
{an}n≥0. The aim of our proposed JMSER designs
is to find a sequence of Wn and an such that

lim
n→∞ P̄E(W n,an) = P̄E(Wopt,aopt), (41)

where Wopt and aopt correspond to the optimal val-
ues of Wn and an, respectively. To present a set
of sufficient conditions under which the proposed al-
gorithms converge, we need the so-called three- and
four-point properties (Csiszar and Tusnády, 1984;
Niesen et al., 2009). Assume that there is a function
f : S ×S → R such that the following conditions are
satisfied:

Three-point property (W , W̃ ,a)

For all n ≥ 1, W ∈ W n, a ∈ an−1, and W̃ ∈
argminW∈Wn

P̄E(W ,a), we have

f(W , W̃ ) + P̄E(W̃ ,a) ≤ P̄E(W ,a). (42)

Four-point property (W ,a, W̃ , ã)

For all n ≥ 1, W , W̃ ∈ W n, a ∈ an, and
ã ∈ argmina∈an P̄E(W̃ ,a), we have

P̄E(W , ã) ≤ P̄E(W ,a) + f(W , W̃ ). (43)

These two properties are the mathematical ex-
pressions of the sufficient conditions for the conver-
gence of the alternating minimization algorithms,
which were stated in Csiszar and Tusnády (1984)
and Niesen et al. (2009). They mean that if there
exists a function f(W , W̃ ) with the parameter W

during two iterations that satisfies the two inequali-
ties (42) and (43) of JMSER, the convergence of our
proposed JMSER designs that use the alternating
minimization algorithm can be proved by the theo-
rem below:
Theorem 1 Let {(W n,an)}n≥0, W ,a be compact
subsects of the compact metric space (S, D) such
that

W n
DH−−→W , (44)

an
DH−−→ a, (45)
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and let P̄E: S × S → R be a continuous function.
Then according to the proposed algorithms, we have

lim
n→∞ P̄E(Wn,an) = P̄E(Wopt,aopt). (46)

A general proof of this theorem as detailed in
Csiszar and Tusnády (1984) and Niesen et al. (2009).
The proposed JMSER designs can be stated as an
alternating minimization strategy on the basis of the
MSER criterion.

6 Simulation results

In this section, the SER performance of the pro-
posed two algorithms is simulated and compared
with those of two existing algorithms, namely the
fixed PA methods based on the MSER and MMSE
criteria with SG implementation. The fixed PA
scheme is on the basis of equal PA. The two-hop
modulated packet is with 1000 transmit symbols
where we have 300 training symbols at the initial
stage. We consider the AF cooperation scheme. The
block fading channel is considered in our simulation
whose elements are Rayleigh-distributed during the
transmission of each packet. In our simulation the
channel information Hs and Hd are obtained by pre-
ceding the proposed channel estimation algorithm in
Section 4.3. The quasi-static fading channel (block-
fading channel) whose elements are Rayleigh ran-
dom variables (with zero mean and unit variance) is
considered in our simulations and assumed to be in-
variant during the transmission of each packet. The
noise at the relay and destination nodes is modeled
as a circularly symmetric complex Gaussian random
variable with zero mean. The simulations are aver-
aged over 1000 runs. To study the performance with
feedback channels, each complex amplification coeffi-
cient is quantized to a 4-bit binary value. The fusion
center feeds the index that corresponds to the se-
lected entry in the codebook back to the relay nodes.
In addition, we select kernel width ρ =

√
2σd em-

pirically to ensure a good performance in terms of
the convergence rate and steady-state SER misad-
justment.

Figs. 2–4 show the SER performances with the
feedback PA vector. Figs. 5–7 show the perfor-
mances in terms of different relays. The PA code-
book design which employs the Lloyd algorithm is
given in the Appendix.

Fig. 2 shows the SER performance versus the

number of received symbols. In the simulation, the
signal-to-noise ratio (SNR) is 15 dB, the number
of source nodes is two, and we tune μwJC = 0.01,
μaJC = 0.04 for the proposed JMSER-CG algorithm
and μwJS = 0.03, μaJS = 0.05 for the proposed
JMSER-SG algorithm. The parameters for the LMS
receiver with fixed PA and the MSER receiver with
fixed PA are μwM = 0.03, μwL = 0.01, and the
fixed PA schemes employ equal power for the re-
lay nodes. The above-mentioned parameters are de-
tailed in Table 2. From the results we can see that
the proposed CG algorithm with a perfect PA vector
performs the best, followed by the proposed CG al-
gorithm with feedback information, the JMSER-SG
algorithm with a perfect PA vector, the JMSER-SG
algorithm with feedback channel, the MSER receiver
with fixed PA, and the LMS receiver with fixed PA.

Table 2 Step sizes of the analyzed algorithms

Algorithm Weight vector PA

JMSER-CG µwJC = 0.01 µaJC = 0.04

JMSER-SG µwJS = 0.03 µaJS = 0.05

MSER fixed µwM = 0.03 −
LMS fixed µwL = 0.01 −

Figs. 3 and 4 show the SER performances ver-
sus the number of source nodes and SNR, respec-
tively. Both simulation results contain performance
with the feedback PA. In addition, the initial PA
vector and step sizes are tuned the same as in Fig. 2.
From the results, we can see that the whole SER
performance becomes worse and worse as the num-
ber of source nodes increases. The SER performance
of JMSER-CG is always better than those of the
other algorithms with SNR in the range of 1–15 dB.
We see that the performance of the JMSER-CG al-
gorithm with five relays using feedback quantized
PA coefficients is also superior to those of the con-
ventional algorithms. The performance of JMSER-
CG with feedback 4-bit PA information approaches
the performance of JMSER-SG with perfect PA
information.

Fig. 5 shows the SER performance versus the
number of received symbols. These simulation re-
sults show the SER performance with different relays
in particular. The initial PA vector and step sizes
are tuned the same as in Fig. 2. When all algorithms
employ the same relays, the proposed JMSER-CG
algorithm with a varying PA vector performs the
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Fig. 2 Curves of SER performance versus the num-
ber of symbols with QPSK modulation (SNR=15 dB,
Ns = 2, Nr = 5, Nd = 20, Nsym = 1000)
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Fig. 3 Curves of SER performance versus the num-
ber of sources with QPSK modulation (SNR=15 dB,
Nr = 5, Nd = 20, Nsym = 1000)
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Fig. 4 Curves of SER performance versus SNR with
QPSK modulation (Ns = 2, Nr = 5, Nd = 20, Nsym =

1000)
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Fig. 5 Curves of SER performance versus the number
of symbols with QPSK modulation for different relays
(SNR=15 dB, Ns = 2, Nd = 20)
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Fig. 6 Curves of SER performance versus the number
of sources Ns with QPSK modulation for different
relays (SNR=15 dB, Nd = 20, Nsym = 1000)
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Fig. 7 Curves of SER performance versus SNR with
QPSK modulation for different relays (Ns = 2, Nd =

20, Nsym = 1000)
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best, followed by the proposed SG algorithm with
a varying PA vector, the MSER receiver with fixed
PA, and the LMS receiver with fixed PA. The algo-
rithms with 10 relay nodes have better average SER
performance as compared to those with five relays,
reflecting the exploitation of spatial diversity.

Figs. 6 and 7 show the SER performances versus
the number of source nodes and SNR, respectively.
The PA vector and step sizes are tuned the same as
in Fig. 2. We can see that the whole SER perfor-
mance becomes worse as the number of source nodes
increased. The SER performance of JMSER-CG is
always better than those of the other algorithms with
SNR in the range of 1–15 dB. In addition, all the
simulation results show that the whole performance
is enhanced with the increase in the number of relay
nodes. In conclusion, although the JMSER-CG algo-
rithm has a slightly increased complexity compared
to the LMS and MSER algorithms, it significantly
outperforms LMS and MSER in terms of the SER
performance for different numbers of source nodes
and different SNR.

7 Conclusions

In this study two joint iterative PA and inter-
ference suppression algorithms were proposed based
on the minimization of the SER cost function for
WSNs that employ the AF relaying strategy. The
proposed two algorithms, including SG and CG,
were derived on the basis of the MSER expression to
jointly update the vector which allocates the power
among the relays subject to a power constraint
and the linear receiver. The SER performance of
the proposed algorithms has been studied in terms
of perfect relay PA and imperfect relay PA via
the feedback channel. Simulation results showed
that the proposed JMSER-CG algorithm achieves
the best performance among the four algorithms,
and that the two proposed adaptive algorithms
significantly outperform the previously reported
algorithms.
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Appendix: Lloyd algorithm for the PA vector
codebook design

Step 1: initialization phase.
Generate a training sequence that consists of

source vectors a with coefficients that are inde-
pendent and identically distributed with a com-
plex Gaussian distribution with zero mean and unit
variance.

Step 2: set t = 1.
Step 3: nearest neighbor rule.
All input vectors a that are closer to the code-

word ai,t−1 than any other codeword should be as-
signed to the neighborhood of ai,t−1 of region Φi.

a ∈ Φi if and only if d(a,ai,t−1) ≤ d(a,aj,t−1),
∀i, j = 1, 2, · · · , 2η, where

d(a,ai,t−1) =
√
1− |aHai,t−1|2

and η is the quantization bit number .
Step 4: centroid condition.
Take the ith region Φi as an example, whose lo-

cal correlation matrix Υ i = E[aaH|a ∈ Φi]. Accord-
ing to the centroid condition, the optimal vector ai,t

should maximize uH
i Υiui subject to the unit norm

constraint, that is,

ai,t = arg max
uH

i ui=1
uH
i Υiui = ei,

where ei is the eigenvector that corresponds to the
largest eigenvalue of Υi.

Loop back to step 3 until convergence.
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