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Abstract: We propose an angle-based mesh representation, which is invariant under translation, rotation, and
uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of
angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation,
and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system
encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames
between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge
length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh
deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several
detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.
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1 Introduction

How to modify and edit the shape of a trian-
gle mesh is an important topic in numerical solving
and geometric modeling (Zhou and Li, 2013). As a
triangular mesh has been a popular representation
for computational physics, mesh deformation has re-
ceived extensive attention in recent years (Luke et al.,
2012). Mesh deformation methods based on differen-
tial coordinates (e.g., Laplacian coordinates and the
gradient field) have been proposed recently (Alexa,
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2003; Sorkine et al., 2004; Lipman et al., 2004; 2005;
Zhou et al., 2004; Yu et al., 2005; Au et al., 2006).
These editing systems represent local features using
differential coordinates defined in a global coordinate
system. The simplest form of differential coordinates
is the Laplacian coordinates. It uses the deviation of
a vertex from the centroid of its neighbors to encode
the local details of the mesh surface. From the the-
ory of discrete differential geometry, various angles
on the mesh surfaces are also important information
to encode the local geometric details. For example,
curvature metrics on a triangular mesh are often es-
timated from the angle information. However, as we
know, there are few works on using angle information
to encode the local details and develop mesh editing
tools.

In this paper, we introduce an angle-based mesh
representation, which is invariant under translation,
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rotation, and uniform scaling. Here uniform scaling
means that the same ratio is applied along x, y, and z

axes. Angle-based mesh representation describes the
mesh by its local angle information between edges.
Using this representation, we develop quasi-angle-
preserving mesh deformation techniques, which pre-
serve the intrinsic geometry information of the sur-
face as much as possible with the constraints of the
modeling operations.

Reconstructing mesh geometry from locally de-
fined quantities is a fundamental mechanism of our
algorithm, which consists of three steps. First, we
use the equations of the difference between the length
of vertex to compute the scalar part of each vertex
(the concept of ‘length of vertex’ will be defined in
Definition 2). Then, we use the relative frame coef-
ficient representation of the local frame to compute
a global least-squares fitting with the user-specified
local frames of the handle. Finally, we use the dif-
ferential representation of the mesh to compute a
global least-squares fitting constrained to the user-
specified positions of the handle. The presented ex-
amples illustrate that the angle information on the
mesh surface is well preserved.

2 Related work

1. Free-form deformation: Free-form deforma-
tion (FFD) has been widely employed as a shape
modification tool in commercial software. The ba-
sic idea of FFD is to embed and parameterize the
target object in a spatial control lattice. The de-
formed surface is obtained through the modification
of the control points. The FFD method was first
introduced by Sederberg and Parry (1986), and ex-
tended to other forms with different kinds of splines
(Coquillart, 1990; Hsu et al., 1992; MacCracken and
Joy, 1996; Xu et al., 2008). Botsch and Kobbelt
(2004) introduced an intuitive free-form modeling
framework that uses custom tailored basis functions
to define interpolations between the handle regions
and fixed outside regions. Curve-based methods
(Lazarus et al., 1994; Singh and Fiume, 1998; Nealen
et al., 2005; Xu et al., 2013) directly attach mesh
surfaces to curves for achieving deformation results.

2. Multi-resolution editing: By decomposing
the geometric details into several levels, the multi-
resolution approaches (Zorin et al., 1997; Kobbelt
et al., 1998; Guskov et al., 1999; Boier-Martin

et al., 2004) enable detail-preserving deformations,
in which the deformation is formed as displacements
in the local coordinate frame, and the coarse mesh is
used as control lattices. In the editing process, the
user transforms the details according to the changes
in the local frames on the low-level mesh. Hence, the
definition of the local frames and the accuracy of the
detail-reconstruction method are important issues in
multi-resolution editing.

3. Differential coordinates editing: Recently, the
local features on mesh geometry were encoded by
differential coordinates for the mesh editing frame-
work (Alexa, 2003; Lipman et al., 2004; 2005; Sorkine
et al., 2004; Zhou et al., 2004; Yu et al., 2005). By
these methods, the users can directly specify the po-
sitions or normal directions on the mesh, called the
handles, and the rest of the surface is reconstructed
by solving a linear system to minimize the shape dis-
tortion. Poisson meshes (Yu et al., 2005) manipulate
gradients of the coordinate functions on the mesh
using local transformation, and the mesh surface is
reconstructed from the Poisson equation. Laplacian
coordinates are another metric to represent surface
details (Alexa, 2003; Lipman et al., 2004; Sorkine
et al., 2004; Zhou et al., 2004). Dual Laplacian co-
ordinates are employed for mesh deformation (Au
et al., 2006) and mesh morphing (Hu et al., 2007) to
produce natural deformation results. Another sur-
face representation is rotation-invariant coordinates
(Lipman et al., 2005), consisting of the tangential
part and the normal part, which are invariant un-
der rotation and translation in the first and second
discrete forms, respectively. However, the above dis-
crete forms are not scale- or shear-invariant.

In this paper, we propose a new mesh editing
framework based on angle-based mesh representa-
tion, which consists of the angles between edges and
the angles between the normals and edges and is
invariant under rotation, translation, and uniform
scaling. The new approach can produce more natu-
ral editing results than previous methods.

3 Angle-based mesh representation

3.1 Mesh representation with angle quantities

Angle-based mesh representation consists of an-
gle quantities, which are invariant under translation,
rotation, and uniform scaling, and contains enough
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information to reconstruct the mesh uniquely.
Let G = (V,E) be a triangular mesh. V

denotes the set of vertices on the mesh; that is,
V = {v1,v2, ...,vn} describes the absolute Carte-
sian coordinates of the vertices in R

3. E denotes the
set of edges; that is, each edge connecting vertices vi

and vj can be represented as a pair (i, j) in E. We
use Pi = (V ′

i , E
′
i) to denote the geometry related to

vi. V ′
i denotes the set of vertices that are projected

on the tangent plane of vi by vi and its 1-ring neigh-
borhood. We use vi

k to denote the kth neighbor of
vertex vi, while vi′

k to denote the kth neighbor of
vertex vi on its tangent plane.
Definition 1 The following notations are used to
define the angle quantities (Fig. 1):

1. αi
k, which are the angles between vectors vi′

k −
vi and vi′

k+1 − vi.
2. βi

k, which are the angles between vectors vi′
k −

vi and vi′
k+1 − vi′

k .
3. γi

k, which are the angles between the normal
N i at vertex vi and the vector vi

k − vi.

Ni

Ni

vi

vkv 
i

γkγ 
i

vk+1v 
i

vkvi
 
′

vk+1vi
 

′

αkαi

βkβi

Fig. 1 Angle quantities of vi

Remark 1 The estimation of normal vector Ni

at vertex vi will affect the performance of the mesh-
editing process. To compute the vertex normal of
triangular meshes more accurately, we will adopt the
weight-based method to estimate the normal vector.
Suppose that the set of triangles that contain vertex
vi is denoted by Fi. If triangle fk is incident to vi,
then fk is in Fi. The unit normal vector Ni at vertex
vi on the mesh is estimated in the following way:

Ni =

∑
fk∈Fi

wkNfk

‖∑fk∈Fi
wkNfk‖

,

where Nfk is the unit normal vector of triangle fk,
and the weights wk are defined as in Chen and Wu
(2004):

wk =
1

‖gk − vi‖ ,

where gk is the center of the triangle face fk, deter-
mined as

gk =
∑

vj∈fk

vj/3.

The angle quantities αi
k, βi

k, and γi
k describe

the geometry of 1-ring neighborhood at vertex vi

up to translation, rotation, and uniform scaling, as
explained in the following theorem:
Theorem 1 Given the angle quantities of vertex
vi and the normal at vi, the 1-ring neighborhood of
vertex vi can be computed by translation, rotation,
and uniform scaling.
Proof Given the vertex vi, the direction of the first
edge can be defined as

ti =
vi
1 − vi

‖vi
1 − vi‖ ,

the distance from vi to its first neighborhood is de-
noted as li, the length of the kth edge on the tangent
plane is denoted as li

′
k , and θik = π− (αi

k+βi
k). Then

li
′
1 = li sin γ

i
1. Since

li
′
k+1

li
′
k

=
sinβi

k

sin θik
=

sinβi
k

sin(π − (αi
k + βi

k))
=

sinβi
k

sin(αi
k + βi

k)
,

the relationship between li
′
k and li

′
1 is computed as

follows:

li
′
k

li
′
1

=
lik

lik−1

lik−1

lik−2

. . .
li2
li1

=
sinβi

k−1

sin(αi
k−1 + βi

k−1)

sinβi
k−2

sin(αi
k−2 + βi

k−2)

. . .
sinβi

1

sin(αi
1 + βi

1)

=

∏k−1
j=1 sinβ

i
j

∏k−1
j=1 sin(α

i
j + βi

j)
,

which implies

li
′
k = li

′
1

∏k−1
j=1 sinβ

i
j

∏k−1
j=1 sin(α

i
j + βi

j)
.

We obtain the distance from vi to its kth neighbor-
hood:

lik =
li

′
k

sin γi
k

= li
sin γi

1

∏k−1
j=1 sinβ

i
j

sin γi
k

∏k−1
j=1 sin(α

i
j + βi

j)
. (1)

Since the length of vi
k − vi is obtained, next we de-

scribe how to compute the direction of vi
k − vi. Set

ni =
N i × ti

‖N i × ti‖
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and bi =
vi′
1 − vi

‖vi′
1 − vi‖

= ni×N i. {bi,ni,N i} forms a

right-hand orthogonal basis. Since the angle between
vectors vi′

k − vi and vi′
1 − vi is

∑k−1
j=1 α

i′
j ,

vi′
k − vi

‖vi′
k − vi‖ = bi cos

k−1∑

j=1

αi′
j + ni sin

k−1∑

j=1

αi′
j .

Then we obtain the unit direction of vector:

vi
k − vi

‖vi
k − vi‖ =

vi′
k − vi

‖vi′
k − vi‖ sin γi

k −N i cos γ
i
k.

Finally, we have

vi
k − vi = lik

vi
k − vi

‖vi
k − vi‖

=
li sin γ

i
1

∏k−1
j=1 sinβ

i
j

sin γi
k

∏k−1
j=1 sin(α

i
j + βi

j)

[(

bi cos

k−1∑

j=1

αi′
j

+ ni sin
k−1∑

j=1

αi′
j

)

sin γi
k −N i cos γ

i
k

]

. (2)

As suggested by the reviewer, the proof of Theo-
rem 1 can also be given by cone construction (Fig. 2).
Starting from vertex vi

k, we can first construct a cone
Ci

k with central axes vi
k−vi and apex angle 2αi

k; sec-
ond, we construct a cone CN

k+1 with central axes −Ni

and apex angle 2(π − γi
k+1). Then the unit vector

of vi
k+1 − vi can be constructed as the intersection

of cones Ci
k and CN

k+1. Finally vertex vi
k+1 can be

constructed by a uniform-scaling factor lik+1, which
can be computed according to Eq. (1).

Note that in Eq. (2), vi
k is related to li, which

is not uniform-scaling invariant. Next, we will de-
scribe that li can be represented in a uniform-scaling
invariant way.

γk+1γ i

vk+1−viv i

vk −viv i

vi

Ni

α iαk+1

Fig. 2 Proof of Theorem 1 by cone construction

Definition 2 The length of vi is defined as the
distance from vertex vi to its first neighborhood.

Assume that the edge (i, j) ∈ E connects ver-
tices vi and vj . We define the difference between the
lengths of vertices:

lj = κi
j li. (3)

Eq. (3) shows that the difference between adjacent
lengths can be encoded in the length of one of the
vertices. The key observation is that κi

j can be ex-
pressed by the coefficients of the angle quantities.
Theorem 2 κi

j can be expressed by angle quanti-
ties αi

k, β
i
k, and γi

k.
Proof Assume that vertex vj is the mth neigh-
borhood of vi and vi is the nth neighborhood of vj .
According to Eq. (2), we have

‖vj−vi‖ = ‖vi
m−vi‖ = li

sin γi
1

∏m−1
t=1 sinβi

t

sin γi
m

∏m−1
t=1 sin(αi

t + βi
t)

and

‖vi− vj‖ = ‖vj
n − vj‖ = lj

sin γj
1

∏n−1
t=1 sinβi

t

sin γj
n
∏n−1

t=1 sin(αi
t + βi

t)
.

Since ‖vj − vi‖ = ‖vi − vj‖, we have

lj
sin γj

1

∏n−1
t=1 sinβi

t

sin γj
n
∏n−1

t=1 sin(αi
t + βi

t)

=li
sin γi

1

∏m−1
t=1 sinβi

t

sin γi
m

∏m−1
t=1 sin(αi

t + βi
t)
,

which implies

li =

sin γj
1

∏n−1
t=1 sinβi

t

sin γj
n
∏n−1

t=1 sin(αi
t + βi

t)

sin γi
1

∏m−1
t=1 sinβi

t

sin γi
m

∏m−1
t=1 sin(αi

t + βi
t)

· lj. (4)

Note that the main advantage of this represen-
tation is that the mesh can be represented by local
quantities which are invariant under translation, ro-
tation, and uniform scaling.

3.2 Frame representation

Since the 1-ring neighborhood of vertex vi can
be computed based on its angle quantities and local
frame, in this subsection we present a method to
represent the local frames which are invariant under
translation, rotation, and uniform scaling.
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Definition 3 Given the frame F i = (bi,ni,N i) at
vertex vi and frames F i

j = (bij ,n
i
j ,N

i
j) for its 1-ring

neighborhood,
⎧
⎪⎨

⎪⎩

bij = λi
j11bi + λi

j12ni + λi
j13N i,

ni
j = λi

j21bi + λi
j22ni + λi

j23N i,

N i
j = λi

j31bi + λi
j32ni + λi

j33N i,

(5)

then λi
jmn (m,n = 1, 2, 3) are called relative frame

coefficients between vertices vi and vi
j .

Theorem 3 The frames of 1-ring neighborhood of
vertex vi can be represented by F i and angle quan-
tities αi

k, β
i
k, and γi

k on the mesh.
Proof Suppose that the first neighborhood of ver-
tex vi is vertex vj and that vi is the kth neighbor-
hood of vj . Assume that the lengths of the first edges
of vertices vi and vj are li and lj , respectively. From
Eq. (2), we obtain

vj
k − vj = −(vi

1 − vi) = −(li sin γibi + li cos γiN i).

Let

e =
li sinβ

1
i

sin(α1
i + β1

i )

(
2 cosα1

i cos γ
1
i + tan γ2

i sin γ
1
i

− cos γ1
i sin(α

1
i + β1

i )

sinβ1
i

)
N i

+ li

(
cosα1

i sinβ
1
i sin γ

1
i

sin(α1
i + β1

i )
− sin γ1

i

)

bi

+
li sinα

1
i sinβ

1
i sin γ

1
i

sin(α1
i + β1

i )
ni.

We obtain

vj
k+1 − vj = (vj

k+1 − vi)− (vj − vi) = e.

Finally, we solve the following equations to obtain
N j :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈N j ,− sin γ1
i bi − cos γ1

iN i〉 = cos γk
j ,

〈N j , e〉 =
lj sin γ

1
j

∏k
t=0 sinβt

∏k
t=1 sin(αt + βt)

cos γk+1
j ,

‖N j‖ = 1.

(6)

Other normals of the 1-ring neighborhood can be
computed in the same way.
Theorem 4 Given the angle quantities, relative
frame coefficients, the length of the first edge taken
from an existing mesh, and an arbitrary local frame
F i at vertex vi, the mesh is uniquely determined up
to translation.

Proof The existence of the mesh is obvious: we
just translate and rotate the existing mesh to make
the frame at vertex vi match F i. For uniqueness,
note that Eq. (6) determines the frames of 1-ring
neighborhood of vertex vi. According to Eq. (2), the
positions of its 1-ring neighborhood are determined.
Similarly, the positions at each vertex are determined
while the neighborhood is growing.

If we denote frame F i as a vector [bi,ni,N i]

and denote all frames for the mesh as a vector
[F 1,F 2, . . . ,F n]

T, the local frames at each vertex
of the mesh can be reconstructed by solving the sys-
tem Mx = 0. M is a 3m×3nmatrix, where n = |V |
and m =

∑n
i=1 di (di is the number of neighborhoods

of vertex vi):

Mij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λs
rmn, 3(s− 1) < j ≤ 3s,

−1, (i− j) mod 3 = 0,

�j/3� is the rth neighbor of s,

0, otherwise,

where s must satisfy 3
∑s−1

t=1 dt ≤ i < 3
∑s

t=1 dt,
r = i− 3

∑s−1
t=1 dt,m = i mod 3, n = j mod 3. Rela-

tive frame coefficient representation for the frames is
invariant under linear transformation. M has rank
n − 3, which means that the nonzero solution of F
can be recovered by fixing one frame and solving a
linear system. If the number of neighborhoods for a
vertex is small, then M is a sparse matrix, and the
local frames can be efficiently computed.

Note that this representation contains redun-
dant information, since Eq. (2) forms an over-
determined system and the relative frame coefficients
can be expressed by angle quantities.

4 Quasi-angle-preserving mesh defor-
mation

The mesh editing process consists of the follow-
ing steps. First, the user defines a region of interest
(ROI) for editing. Second, the user selects some
triangles of the ROI as a handle, which acts as a con-
trol point to obtain the desired deformation results
(Fig. 3). In this step, as presented in Lipman et al.
(2004), the user can optionally define the station-
ary anchors, which support the transition between
the ROI and the untouched part of the mesh. After
the specification of the ROI, stationary anchors, and
handle vertex, the mesh vertices can be classified into
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Fig. 3 Hill deformation: (a) original mesh; (b) de-
formed mesh; (c) angle difference. References to color
refer to the online version of this figure

two groups: the modified vertices on the ROI, and
the rest of the mesh, which stays fixed during the
deformation. Then, in the third step, the user moves
the handle to a new position. The user can rotate the
triangles and translate the triangles to a new place.
The scalar factor can be given as a parameter. Fi-
nally, the surface is reconstructed according to the
relocation of the handle. The user can repeat the
selecting and handle relocating steps for the current
ROI until the desired editing result is achieved.

From this algorithm, once the user defines an
ROI, we can obtain angle quantities, relative frame
coefficients for each vertex in ROI, and the κi

j for
each vertex and its neighborhoods. When transform-
ing the handle to a new position, we constrain the
new local frame and the position of the new vertex
and reconstruct the deformed mesh in the following
steps:

1. Compute li for each vertex vi in ROI accord-
ing to the transformation of the handle.

2. Construct Eq. (6) with the constrained local
frame as an additional equation to obtain the local
frame at each vertex in ROI.

3. Construct Eq. (2) with the constrained han-
dle position as an additional equation to obtain the
deformed geometry at each vertex in ROI.

The deformed mesh satisfying the above con-
straints will be reconstructed in a least-squares sense
as the Laplacian mesh editing method (Lipman et al.,
2004). This results in three error functionals, includ-

ing the differential length error functional, differen-
tial frame error functional, and differential coordi-
nate error functional.

In the first step, according to Eq. (4), we can
obtain a differential length error functional which is
defined as follows:

E(L) =

n∑

i=1

di∑

j=1

(li − κi
j lj)

2 +

m∑

i=1

wi(li − li′)
2,

where i < j (i = 1, 2, . . . ,m), li′ are the constraint
lengths, and wi > 0 are the weights that we assign
to the constraints.

In the second step, according to Eq. (6), the dif-
ferential frame error functional is defined as follows:

E(F ) =

n∑

i=1

[
di∑

j=1

(λi
j11bi + λi

j12ni + λi
j13N i − bj)

2

+

di∑

j=1

(λi
j21bi + λi

j22ni + λi
j23N i − nj)

2

+

di∑

j=1

(λi
j31bi + λi

j32ni + λi
j33N i −N j)

2

]

+

m∑

i=1

wi

[
(bi − b′i)

2 + (ni − n′
i)

2 + (N i −N ′
i)

2
]
,

where Fi = (b′i, n′
i,N

′
i) (i = 1, 2, . . . ,m) are the

constraint frames and wi > 0 are the weights that
we assign to the constraints.

Since the frames for each vertex have been com-
puted, according to Eq. (2), the differential coordi-
nate error functional is defined as follows:

E(V ) =

n∑

i=1

{
di∑

j=1

[

(vj
i − vi)− (Cj

i1bi + Cj
i2ni

+ Cj
i3N i)

]}2

+

m∑

i=1

wi(vi − v′
i)

2,

where v′
i (i = 1, 2, . . . ,m) are constrained vertices,

Cj
i1 =

li sin γ
i
1

∏k−1
j=1 sinβ

i
j

sin γi
k

∏k−1
j=1 sin(α

i
j + βi

j)
cos

k−1∑

j=1

αi′
j sin γi

k,

Cj
i2 =

li sin γ
i
1

∏k−1
j=1 sinβ

i
j

sin γi
k

∏k−1
j=1 sin(α

i
j + βi

j)
sin

k−1∑

j=1

αi′
j sin γi

k,

Cj
i3 = − li sin γ

i
1

∏k−1
j=1 sinβ

i
j

sin γi
k

∏k−1
j=1 sin(α

i
j + βi

j)
cos γi

k,

and wi > 0 are the weights that we assign to the
constraints.
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5 Implementation and analysis

The algorithm presented in this study has been
implemented and tested on a computer with a 2.4
GHz Pentium IV CPU. The computational kernel of
our algorithm is a sparse linear solver for the least-
squares problem min‖Ax − c‖ over the deformed
mesh. This problem can be solved fast enough to
guarantee interactive editing. We adopt a direct
solver (Toledo, 2003) which first computes a sparse
triangular factorization of the normal equations and
then finds the minimizer by back-substitution. The
factorization is the most time-consuming operation,
but it needs to be done only once during the deforma-
tion. Solving the linear system by back-substitution
is quite fast and enables us to reconstruct the sur-
face interactively, following the user’s manipulation
of the handle.

In Fig. 3, after specifying the red handle regions
and the whole mesh as ROI (Fig. 3a), the user trans-
lates and rotates the handle regions to a new posi-
tion. Our quasi-angle-preserving mesh deformation
method is used to propagate and damp the handle’s
transformation naturally (Fig. 3b). The angle dif-
ference between undeformed and deformed meshes is
shown in Fig. 3c, where the horizontal axis describes
the difference quantities of corresponding angles be-
tween undeformed and deformed meshes, and the
vertical axis describes the percentage of angles with
the same difference quantity. Figs. 4 and 5 demon-
strate another two examples. The legs and head of
the Dino model are deformed naturally.

In Figs. 6 and 7, the shape is deformed with and
without the top axis as the vertex constraint, respec-
tively. From top to bottom, the angles for rotation
are π and 2π, respectively. The corresponding error
charts show that more constraints will cause more
distortion of the angles.

To show the performance of our method, we
compare it with the method using linear rotation
coordinates (Lipman et al., 2005) (Fig. 8). For the
Rabbit example, after specifying two ears of the orig-
inal Rabbit model as the support regions and the
red handle regions (Fig. 8g), the user rotates the
handle regions. Propagating this rotation based on
reconstruction of the local frames gives an intuitive
solution of a smooth interpolation. Compared with
linear rotation coordinates (right), our results (mid-
dle) are more natural.
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Fig. 4 Pipe deformation: (a) original mesh; (b) de-
formed mesh; (c) angle difference
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Fig. 5 Dino deformation: (a) original mesh; (b) de-
formed mesh; (c) deformed mesh from another view-
point; (d) angle difference. References to color refer
to the online version of this figure

We also evaluate the efficiency of the proposed
technique (Table 1). The computation time depends
heavily on the number of vertices of the original
model.
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Fig. 6 Shape deformation with axial constraints: (a)
original mesh; (b) deformed mesh with rotation an-
gle π; (c) angle difference between the original mesh
and deformed mesh in (b); (d) deformed mesh with
rotation angle 2π; (e) angle difference between the
original mesh and deformed mesh in (d)

Table 1 Model size and computation time

Model
Number of Computation

vertices time (s)

Hill 628 0.23
Pipe 2217 2.52
Dino 28 150 7.89
Rectangular 367 0.16
Handle of teapot 348 0.14
Mouth of teapot 359 0.18
Rabbit 36 827 9.88
Armadillo 82 672 15.26
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Fig. 7 Shape deformation without axial constraints:
(a) deformed mesh with rotation angle π; (b) angle
difference between the original mesh and deformed
mesh in (a); (c) deformed mesh with rotation angle
2π; (d) angle difference between the original mesh and
deformed mesh in (c)

6 Conclusions and future work

In this paper, we propose an angle-based mesh
representation, which is invariant under translation,
rotation, and uniform scaling. Using this mesh repre-
sentation, we develop a novel quasi-angle-preserving
mesh deformation method by translating, rotating,
and uniform scaling of the handle. Several examples
show the effectiveness of our algorithm.

There are several issues to be investigated.
First, the frames and vertices are deformed sepa-
rately and the translation of the handle will not af-
fect the local frames of the mesh. How to solve this
problem will be investigated in the future. Second,
self-intersections may appear during the editing pro-
cess. How to avoid self-intersections is another open
problem. In addition, the sensitivity of the proposed
method with respect to the choice of first neighbor-
hood should be studied in the future. How to apply
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Fig. 8 Comparison between the proposed deformation method (middle) and the method using linear rotation-
invariant coordinates proposed by Lipman et al. (2005) (right). The left column gives the original models.
References to color refer to the online version of this figure

this new mesh representation to other kinds of mesh
processing operations, such as mesh watermarking,
is also a future direction.
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