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Abstract:    To overcome the high computational complexity in real-time classifier design, we propose a fast classification scheme. 
A new measure called ‘reconstruction proportion’ is exploited to reflect the discriminant information. A novel space called the 
‘reconstruction space’ is constructed according to the reconstruction proportions. A point in the reconstruction space denotes the 
case of a sample reconstructed using training samples. This is used to search for an optimal mapping from the conventional sample 
space to the reconstruction space. When the projection from the sample space to the reconstruction space is obtained, a new sample 
after mapping to the new discriminant space would be classified quickly according to the reconstruction proportions in the re-
construction space. This projection technique results in a diversion of time-consuming calculations from the classification stage to 
the training stage. Though training time is prolonged, it is advantageous in that classification problems such as identification can 
be solved in real time. Experimental results on the ORL, Yale, YaleB, and CMU PIE face databases showed that the proposed fast 
classification scheme greatly outperforms conventional classifiers in classification accuracy and efficiency. 
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1  Introduction 
 

Classifier design is an essential component in 
pattern recognition. An effective classification such 
as the nearest neighbor (NN) classifier may be used in 
a variety of fields, such as cluster analysis (Zhang and 
Srihari, 2004), object recognition (Stefan et al., 2009), 
pattern matching (Athitsos et al., 2008), data mining 
(Zhang et al., 2010), and machine learning (Chen, 
2010). As a classical problem in a cross field, face 
recognition has been relying heavily on the per-
formance of classifiers (Zhao et al., 2003; Abate et al., 
2007; Jiang et al., 2008; Zhang and Gao, 2009; Singh 
et al., 2012). It is well observed that efficiency and 
accuracy are fundamental but contradicting issues in 
classification. Theoretically an optimal classifier with 
high precision is not necessarily the best practical 
choice if it is of high complexity. NN and K-nearest 

neighbors (KNN) classifiers are two most popular 
classifiers in pattern recognition (Psaltis et al., 1994; 
Bax, 2000; Mullin and Sukthankar, 2000; Duda et al., 
2001). NN classifies the new sample based on the 
minimum distance to a single training sample, 
whereas KNN classifies the new sample based on the 
K minimum distances to the training samples. Though 
simple and efficient, these minimum distance based 
classifiers are of poor accuracy (Zhang et al., 2006; 
Meo et al., 2012), yielding poor generalization capa-
bility with a limited number of samples (Vincent and 
Bengio, 2002) and are less effective due to the ‘curse 
of dimensionality’ (Jain and Chandrasekaran, 1982). 
To improve the generalization capability, numerous 
techniques have been proposed, such as the KNN 
classifier based on adaptive nonparametric separabil-
ity (Keller et al., 1985), K-local hyperplane distance 
nearest neighbor (HKNN) (Vincent and Bengio, 
2002), and nearest bounding hyperdisk (NHD) (Ce-
vikalp et al., 2008). However, they are similar to the 
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classical KNN classifier which possesses only the 
classification phase but no training phase. The com-
putational complexity of these classifiers can be pro-
hibitive for classifications on large datasets. 

Subspace classification methods classify a query 
sample into the class whose subspace is the closest. In 
a subspace based classifier, each class is considered as 
a variable smooth manifold. Compared with NN, 
KNN, and their improvements aforementioned, a 
subspace classifier has better performance but with 
more computational complexity. The nearest sub-
space (NS) classifier which is based on the minimum 
distance to the subspace is a representative subspace 
classification (Ho et al., 2003). The nearest feature 
line (NFL) classifies samples based on the best affine 
representation in terms of a pair of training samples 
(Li and Lu, 1999). NS and NFL consider local dis-
criminant information, but are of low robustness. 
Inspired from the recently developed compressive 
sensing (CS) theory (Donoho, 2006; Baraniuk, 2007; 
Candes and Wakin, 2008), Wright et al. (2009) pro-
posed a sparse representation based classification 
(SRC) algorithm for robust face recognition. SRC 
represents a test sample in an overcomplete dictionary 
whose base elements are also the training samples. It 
is convincing that the theory of sparse representation 
and compressed sensing can solve the two funda-
mental problems in automatic face recognition, 
namely feature extraction and poor accuracy due to 
occlusion. SRC can enhance the robustness and im-
prove the recognition performance; however, the very 
high performance complexity of the SRC algorithm 
significantly limits its use in practical applications. 

It is obvious that subspace classifiers can be re-
garded as a method based on reconstruction, because 
samples are predicted based on the reconstruction 
error. They differ only in the choice of the recon-
struction basis. For example, for NS and NFL, sam-
ples of each class are treated as a reconstruction dic-
tionary, while for SRC all training samples are treated 
as a reconstruction dictionary. In fact, even NN may 
be generalized as a reconstruction based classifier. 
Each training sample is selected only as the basis for 
the calculation of the reconstruction error. Inspired by 
the above observation, a new measure called ‘recon-
struction proportion’, reflecting the similarity of 
samples, is applied to improve these classifiers. 

To deal with high dimensional pattern recogni-

tion such as face recognition, feature extraction or 
feature selection is a viable way. Nonlinear subspace 
methods, such as isometric mapping (ISOMAP) 
(Tenenbaum et al., 2000), locally linear embedding 
(Roweis and Saul, 2000), and Laplacian eigenmaps 
(Belkin and Niyogi, 2003) are good accomplishments, 
where facial images are empirically viewed as a 
highly nonlinear manifold in the observation space. 
However, these methods suffer from the out-of- 
sample problem; that is, when a new sample is aug-
mented, it needs to be re-calculated. Increased com-
putational complexity limits their applications in 
real-time recognition. It seems that most of the com-
plex classifiers such as SRC suffer from a similar 
complexity issue. To achieve effective and efficient 
face recognition, many linear subspace methods have 
been proposed, including subspace algorithms such as 
principal component analysis (PCA) (Turk and Pent-
land, 1991), linear discriminant analysis (LDA) 
(Belhumeur et al., 1997), locality preserving projec-
tions (LPP) (He and Niyogi, 2003), neighborhood 
preserving embedding (NPE) (He et al., 2005), 
maximum margin criterion (MMC) (Li et al., 2006), 
and sparsity preserving projections (SPP) (Qiao et al., 
2010). The technique of mapping samples to a sub-
space by linear projection can significantly reduce the 
calculation in the recognition process. Motivated by 
this, we explore a linear projection from a sample 
class to a new manifold space, called the ‘recon-
struction space’, to reduce the time complexity. The 
projection may be obtained by a training phase so that 
we need only to perform limited calculations in the 
reconstruction space mapped from a new sample, 
instead of comprehensive calculations in the sample 
space. As a result, the high performance complexity 
in the recognition phase is transferred to the pre-
processing phase of the training stage. 

 
 
2  Reconstruction proportion 
 

As mentioned above, each class is considered as 
a variable smooth manifold space. In the local smooth 
manifold, a sample can be well reconstructed by 
samples from the same class. It is reasonable to as-
sume that any point in the manifold is a placeholder of 
the class. Therefore, the distance from a query sample 
to the manifold can be defined as the classification 
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metric (Liu et al., 2011). To quantify the classification 
metric, we define the following measure of the dis-
tance from a sample to the class. 
Definition 1 (Distance from sample to class, SCD)    
Consider a local smooth manifold ,1 ,2[ , ,i i iX x x  

,..., ]
ii nx  whose points belong to the same class i. The 

distance from a sample y to this class is defined as 
 

2
SCD( , ) min ,i i i y X y X            (1) 

 
where ψi is the reconstruction coefficient. The smaller 
the SCD, the higher the probability that sample y 
belongs to class i. To illustrate the relation, a simple 
example is shown in Fig. 1, where xi,1 and xi,2 are 
samples from the same class i, y is a new sample, 
parallelogram oabc is the local manifold spanned by 
vectors xi,1 and xi,2, and the norm of bd is the SCD 
with y to class i. 

 

 

 
 

 

 
 
 
 
 
Then we introduce the reconstruction proportion 

and illustrate it in the face recognition process. 
In appearance-based techniques, a 2D face im-

age of size p×q is represented by a point in an 
M-dimensional space (M=pq), which is called the 
‘sample space’ or ‘image space’. Given sufficient 
training samples, we assume that a new (test) sample 
yúM from the ith object class approximately lies in 
the linear span of the training sample of the same 
class associated with object i: 

 

,1 ,1 ,2 ,2 , , ,y x x x   
i ii i i i i n i na a a          (2) 

 
where ai,j (j=1, 2, …, ni) represents the reconstruction 
contribution of y with training samples xi,j. In fact, the 
contribution contains natural discrimination informa-
tion. Based on this observation, we apply the contri-
bution to evaluate the similarity of two samples. 

Given N training samples, we define the recon-
struction proportion as follows: 
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x As
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where A is the dictionary matrix, si=[ai,1, ai,2, …, 
ai,N]TúN is a point in the N-dimensional reconstruc-
tion space with ai,j being the reconstruction proportion 
of sample xi with sample xj. 1 is a vector of all ones. It 
is straightforward to prove that si is invariant to rota-
tions, rescaling, and translations due to the sum-to- 
one constraint (He et al., 2005; Li et al., 2006). 

Obviously, the reconstruction proportion ai,j de-
fined to reflect the similarity will change along with 
the changes in dictionary matrix A (the different con-
struction methods of the dictionary matrix will be 
introduced in Section 3). A high reconstruction pro-
portion value denotes a high probability of two sam-
ples belonging to the same class. Then we seek a 
reasonable linear projection WúN×N from the initial 
sample space to the reconstruction space through the 
following minimization problem: 

 

        
2

1

min .
W

Wx s



N

i i
i

                  (4) 

 

It is assumed that a (test) sample can be repre-
sented as a linear combination of samples from the 
same object class in the sample space by Eq. (2); that 
is, samples from the same class lie on a local linear 
subspace (the so-called ‘face subspace’). In fact, ap-
plying W to both sides of Eq. (2) yields 

 

,1 ,1 ,2 ,2 , ,
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     (5) 

 

Consequently, this relationship will be preserved 
in the reconstruction space due to the linearity of 
projection W. As in the sample space, the reconstruc-
tion proportions can comprise the regional clusters in 
the reconstruction space. We can classify the samples 
efficiently based on the distributions after mapping to 
the reconstruction space due to the coherency. 

However, it is insufficient to express the sample 
space in terms of N points. Thus, mapping an 
M-dimensional point in the sample space to a new 

Fig. 1  Distance from sample to class (SCD)
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N-dimensional point in the reconstruction space using 
dictionary matrix AúM×N will result in much in-
formation loss if N is much smaller than M. Similar to 
sparse representation, we can make the dictionary 
consisting of points be over completed before map-
ping the points to the reconstruction space. An alter-
native method is to find the Q-dimensional (Q≤N) 
feature subspace of the original sample space with 
feature extraction or dimension reduction algorithms 
such as PCA and LDA. 

 
 

3  Improved classification scheme 

3.1  Improved NN and KNN classifiers 

The aim of a classifier in object recognition is to 
use labeled training samples from c distinct object 
classes to correctly determine the class to which a 
new test sample belongs. The NN classifier tries to 
find the minimum distance from the test sample to a 
single training sample: 

 
     min ( , ),    1, 2, ..., ,ii

j d i N y x          (6) 

 
where d(y, xi) is the distance from y to xi. Then we can 
assign y to the object class to which xj belongs, 
whereas the KNN classifier finds the K nearest 
neighbors and assigns y to the object class to which 
the majority of K samples found belong. Though NN 
and KNN classifiers are simple, the search for the 
most similar samples can be very time-consuming, 
especially with mass data. Inspired by the principle of 
NN and KNN classification, we project a training 
sample into the reconstruction space in which this 
training sample has the highest similarity to itself. 
Thus, the dictionary matrix in Eq. (3) is defined as 
A=[0, …, 0, xi, 0, …, 0]. Obviously, si is an 
N-dimensional unit vector with the ith element being 
1 and all other elements 0. So, improved NN and 
KNN classifiers search for the projection W by solv-
ing the least squares problem defined in Eq. (4). Ac-
cording to the coherency, a test sample after mapping 
to the reconstruction space will be well reconstructed 
by its nearest neighbor. The distance from a query 
sample to the subspace is the distance from the origin 
to the point in the reconstruction space after mapping 
to each coordinate axis, because each training sample 
is considered to be independent of the NN and KNN 

schemes. That is, the ith reconstruction proportion 
value is the maximum if the test sample belongs to the 
same object class as xi. In Fig. 2, test samples are 
mapped to the reconstruction space. We select N=2 
for illustration. 
 

 
 
 
 
 
 
 
 
 

 
 

 
Based on the above discussion, we summarize 

the procedure of the proposed improved NN and 
KNN classifiers as Algorithm 1. 
 

Algorithm 1    Improved NN classifier and KNN 
classifier (INN and IKNN) 
Input: a matrix of training samples X=[x1, x2, …, xN]úM×N 
for c classes, and a test sample yúM. 
1. If N<<M, map M-dimensional samples of X and y to 

Q-dimensional samples of X  Q N   and Qy   (Q≤N), 

respectively. 
2. Let E be the N-dimensional identity matrix. Then solve the 
following optimization Frobenius norm problem: 
 

 
F

ˆ min .
W

W WX E                           (7) 

 

3. Compute the mapped data 1 2
ˆˆ [ , , , ],Na a a y Wy   and the 

improved NN classifier finds the maximum element of ŷ : 
  

 max ,    1, 2, ..., ,i
i

j a i N                       (8) 

 
while the improved KNN classifier finds the K maximum 
elements of ŷ  (assume 

1 2
| | | | ... | |).

Kj j ja a a    

Output: For the NN classifier, the predicted class of y is set 
equal to the class to which sample xj belongs, while for the 
KNN classifier, the predicted class of y is set equal to the most 
frequent true class among K training samples 

1 2
, , , .

Kj j jx x x  
 

3.2  Improved nearest subspace classifier 

In contrast to the NN classifier, the NS classifier 
aims to find the minimum distance to the subspace 

x 2

Fig. 2  Data visualization in a 2D reconstruction space
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spanning all training samples from each object class. 
Let 1 2 1,1 1, 2,1 2,[ , , , ] [ ,..., , ,

c cc n n     X X X X x x x x  

,1 , ]
cc c n x x  be the matrix for the entire training 

set as the concatenation of the N training samples of 
all c object classes. NS classifies the new sample 
based on the best linear representation in terms of all 
the training samples in each class: 

 

min .y X v  i ii
j                      (9) 

 
We then assign y to the jth class. Though in the 

NS classifier there is no need to calculate the distance 
from the test sample to each training sample, search-
ing for the linear combination can be very time- 
consuming. To avoid this problem, we explore to 
more efficiently obtain the coefficients of linear rep-
resentation. For each training sample xi,j from the ith 
class, we define dictionary matrix A=[0, …, 0, xi,1, …, 

, 1 , 1 ,,  ,  ,  ,  ,  ,  ,  ].
ii j i j i n   x x x0 0 0  îs  calculated using 

Eq. (3) is a vector whose only nonzero entries are the 
entries associated with the ith class. The improved NS 
classifier finds the projection W by solving the opti-
mization problem defined in Eq. (4). Then, a test 
sample from the ith class after mapping to the recon-
struction space can be well reconstructed by samples 
from the same class with a test sample. In other words, 
using only the reconstruction proportion associated 
with the ith class, the given test sample can be well 
approximated. Fig. 3 illustrates the improved NS 
classifier. We summarize the procedure of the pro-
posed improved NS classifier as Algorithm 2. 
 

Algorithm 2    Improved NS classifier (INS) 
Input: a matrix of training samples X=[X1, X2, …, Xc]úM×N 
for c classes, and a test sample yúM. 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. If N<<M, map M-dimensional samples of X and y to  

Q-dimensional samples of 1 2=[ , , , ] Q N
c

X X X X      and 
Qy   (Q≤N), respectively. 

2. For each training sample j
i
x  in the feature subspace which 

denotes sample xi
  from the jth class (i=1, 2, …, N), compute 

the reconstruction proportion: 
 

2

T

ˆ min

s.t. 1,
i

j
i i i

i

 


s

s x As

s



1
                          (10) 

 
where [ , , , , , , ],jA X 0 0 0 0  and jX  denotes training 

samples in which x j
i  is removed from j

X . 

3. Let 1 2ˆ ˆ ˆ[ , , , ].NS s s s   Then solve the following optimiza-

tion Frobenius norm problem: 
 

F
ˆ min .

W
W WX S                         (11) 

 

4. Compute the mapped data: p 1 2
ˆ [ , , , ].Na a a r Wy   The 

improved NS classifier finds the minimum residuals: 
 

   pmin ( ) ,    1,2, , ,i
i

l i c  y Xδ r            (12) 

 
where δi(·) is the characteristic function used to select the 
coefficients associated with the ith class; that is, δi(rp) is a new 
vector whose only nonzero elements are elements in rp that are 
associated with class i. 
Output: the predicted class of y is set equal to l. 

 
3.3  Improved sparse representation based classi-
fication 

To obtain a more discriminative classifier, SRC 
provides new insight into two fundamental issues in 
classification, feature extraction and robustness to 
occlusion. Based on global sparse representation, 
SRC aims to find the sparse solution by solving the 
following stable l1-minimization problem: 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Representation of a test image with reconstruction proportion by the improved nearest subspace (INS) classifier
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1

2

ˆ min

s.t.  .



 

s s

Xs y
                  (13) 

 
SRC then classifies y based on these approximations 
by assigning it to the object class that minimizes the 
residual: 
 

    
2

min ( ) ( ) .i i
i

r  y y Xδ s              (14) 

 
Unfortunately, the computational complexity of 

the SRC algorithm is very high, which restricts its 
applications in practical recognition problems. To 
reduce the complexity of the robust algorithm, we try 
to avoid the sparse representation in the recognition 
stage. For each training sample xi, we define a dic-
tionary matrix A=[x1, …, xi−1, 0, xi+1, …, xn]. îs  cal-

culated using Eq. (13) is a vector whose ith entry is 
zero. Improved SRC finds the projection W by solv-
ing the least squares problem defined in Eq. (4). Then, 
we can obtain the approximate reconstruction pro-
portion of the test sample with training samples by 
mapping the test sample from the ith class to the re-
construction space. Using only the reconstruction 
proportion associated with the ith class, the given test 
sample can be accurately approximated. Fig. 4 illus-
trates the improved SRC. 

We may summarize the procedure of the pro-
posed improved SRC as Algorithm 3. 
 
Algorithm 3    Improved SRC (ISRC) 
Input: a matrix of training samples X=[x1, x2, …, xN]úM×N 
for c classes, and a test sample yúM. 
1. If N<<M, map M-dimensional samples of X and y to 

Q-dimensional samples of 1 2[ , , , ] Q N
N

 X x x x      and 
Qy   (Q<<N), respectively. 

2. For each training sample ix  (i=1, 2, …, N), a sparse 

 
 
 
 
 
 
 
 
 
 
 
 
 

restriction for Eq. (3) is added to compute the reconstruction 
proportion: 
 

2

T

0

ˆ min

s.t.  ,   1,

i
i i i

i i

 

 

s
s x As

s s



1
                        (15) 

 
where 1 1 +1[ , , , , , , ],i i nA x x x x    0  and ς is the small 

threshold value which restricts îs  to be sparse enough. 

3. Let 1 2ˆ ˆ ˆ=[ , , , ].S s s sN  Then solve the following optimization 

Frobenius norm problem: 
 

F
ˆ min . 

W
W WX S                        (16) 

 

4. Compute the mapped data: p 1 2
ˆ [ , , , ].r Wy  Na a a   The 

improved NS classifier finds the minimum residuals: 
 

pmin ( ) ,    1,2, , .ii
l i c  y Xδ r             (17) 

 
Output: the predicted class of y is set equal to l. 

 
To simplify the calculation, rewrite Eq. (15) as 
 

1

T

2

ˆ min

s.t.  ,   1,

i
i i

i i i



  

s
s s

x As s 1
            (18) 

 
where an optional error tolerance ε>0. 
 
 
4  Experimental results 
 

The experimental platform is configured with a 
general Intel Core 2 Duo CPU (E7500) 2.93 GHz,  
2 GB RAM and MATLAB 7.11. To test the recogni-
tion accuracy of the proposed method, we perform 
comprehensive experiments on four famous facial 
databases: 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Representation of a test image with reconstruction proportion by the improved sparse representation classifier
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ORL: the ORL database consists of 400 frontal 
face images of 40 individuals. For some subjects, the 
images are taken at different times. The facial ex-
pressions (open or closed eyes, smiling or no smiling) 
and facial details (glasses or no glasses) also vary. 

Yale: the Yale face database contains 165 images 
of 15 individuals (each person has 11 different  
images) with various facial expressions and lighting 
conditions. 

YaleB: the Extended Yale B database consists of 
2414 frontal-face images of 38 individuals. The face 
images were captured under various laboratory-  
controlled lighting conditions.  

CMU PIE: the CMU PIE face database includes 
68 subjects with 41 368 face images as a whole. The 
face images were captured by 13 synchronized cam-
eras and 21 flashes, with varying pose illuminations 
and expressions.  

To show the computational efficiency of the 
proposed methods, we use the cropped images with 
resolution 32×32, downloaded from http://www.cad. 
zju.edu.cn/home/dengcai/Data/FaceData.html. Thus, 
each image can be represented by a 1024-dimensional 
vector, normalized to [0, 1]. Fig. 5 shows some face 
images from the four face databases. We perform each 
experiment 10 times and show an average of 10 ex-
perimental results for analysis. 

Based on efficient linear projection to the re-
construction proportion, the complexity can be sig-
nificantly reduced in the classification process. To 
evaluate the efficiency of classification, we select 
different numbers of samples as a training set and 
compare the performance between conventional 
classifiers and the proposed classifiers. Many classi-
fiers, such as PCA, LPP, NPE, MMC, and SPP, may  
 

 
 
 
 
 
 
 
 
 
 
 
 

be adopted after feature extraction. In our approach 
we use the simple PCA algorithm as the preprocessor 
prior to applying the classification to ensure Q<<N. 
The feature subspace is spanned by the eigenvectors 
corresponding to Q eigenvalues where Q=150. The 
computational complexity of classifying a test sample 
with different numbers of training samples from the 
CMU PIE face database are shown in Fig. 6. For 
KNN and IKNN classifiers, we empirically set 
neighborhood size K equal to the training sample size 
per subject. 

Fig. 6 gives the computational complexities of 
conventional and improved classifiers. It can be seen 
that the computational complexity of ISRC is much 
smaller than that of SRC. When there are 10 000 
training samples, the time consumption is about 78 s 
for SRC, but just about 0.3 s for ISRC. From the 
subgraph of Fig. 6, we can see that even the simple  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  The computational time of classifiers with differ-
ent numbers of training samples 
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Fig. 5  Partial images of an individual from the ORL, Yale, YaleB, and CMU PIE face databases 
(a) Ten face images of an individual from the ORL database; (b) Eleven face images of an individual from the Yale face da-
tabase; (c) Partial images of an individual from the YaleB face database; (d) Partial images of an individual from the CMU 
PIE face database 
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NN and NS classifiers suffer from high complexity 
when the number of training samples gets large, but 
the proposed classifiers can significantly improve the 
efficiency as the number of training samples increases. 
Even when the number of training samples reaches 
10 000, the time consumption of the proposed classi-
fiers is almost 0 s. Comparing the complexity with the 
number of training samples for different algorithms, it 
is evident that the proposed improved NN, KNN, NS, 
and SRC classifiers significantly outperform tradi-
tional classifiers in complexity, particularly on large 
face databases, and maintain a slow computational 
complexity increase over the number of training 
samples. 

The KNN classifier is always sensitive to the 
neighborhood size; that is, an inappropriate neigh-
borhood size will lead to poor performance. Fig. 7 
shows the recognition accuracy of KNN and IKNN 
classifiers with different neighborhood sizes on the 
YaleB database. The IKNN classifier greatly outper-
forms the KNN classifier in efficiency and is insen-
sitive to the neighborhood size. The recognition ac-
curacy of IKNN remains stable at about 95%, 
whereas the recognition accuracy of KNN sharply 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reduces from 65.72% with three neighbors to 47.20% 
with 32 neighbors. 

To further verify the effectiveness and efficiency 
of the proposed classifiers, we evaluate the perform-
ance of the proposed algorithm and compare it to 
those of several conventional classifiers on ORL, Yale, 
YaleB, and CMU PIE face databases after applying 
different feature extraction algorithms such as PCA, 
LPP, NPE, MMC, and SPP. To better evaluate the 
performance, we also consider the supervised LPP 
and NPE (denoted by S-LPP and S-NPE, respectively) 
where a priori knowledge is used to obtain the nearest 
neighbors. We randomly select half of the image set 
per class for training (i.e., 5, 6, 32, and 85 images per 
subject for ORL, Yale, YaleB, and CMU PIE face 
databases, respectively) and the remaining images for 
test. For KNN and IKNN classifiers, we empirically 
set neighborhood size K=3. The best average recog-
nition accuracies of the classifiers in conjunction with 
different conventional holistic face feature extractors 
are summarized in Tables 1–4, from which we have 
the following observations: 

1. For PCA, LPP, etc., INN, IKNN, and INS 
classifiers outperform the conventional NN, KNN, 
and NS classifiers respectively on all the four face 
databases. For example, on the small Yale face data-
base, PCA+INN, PCA+IKNN, and PCA+INS lead to 
4.5%, 2.9%, and 13.7% of average improvement in 
comparison with PCA+NN, PCA+KNN, and PCA+ 
NS, respectively; on the large YaleB face database, 
PCA+INN, PCA+IKNN, and PCA+INS lead to 
27.0%, 28.6%, and 2.3% of average improvement in 
comparison with PCA+NN, PCA+KNN, and PCA+ 
NS, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Best average recognition accuracy on the ORL face database using different feature extraction algorithms 

Recognition accuracy (%) 
Method 

PCA LPP NPE S-LPP S-NPE MMC SPP 

NN 88.7±0.70 91.0±2.45 91.3±2.80 92.2±4.20 93.8±1.75 94.3±1.75 91.4±2.40 
INN 91.5±2.45 91.3±2.80 91.5±2.45 93.6±2.10 94.5±3.50 94.3±1.75 91.6±1.55 
KNN 85.7±0.70 89.1±3.40 89.2±3.35 92.5±3.50 93.8±1.75 91.5±0.50 89.3±3.25 
IKNN 92.1±4.55 91.3±2.80 91.5±2.45 93.9±3.85 94.5±3.50 93.3±1.75 91.5±2.45 

NS 92.8±2.80 92.6±2.10 93.0±2.45 94.7±3.15 95.0±2.45 93.5±3.50 92.3±1.75 
INS 95.3±1.75 94.5±2.45 94.6±2.10 94.5±3.50 94.6±2.10 94.1±2.10 94.6±2.10 
SRC 96.3±2.80 96.5±2.45 96.1±2.10 94.8±2.80 94.7±3.15 96.2±3.15 95.9±1.90 
ISRC 96.0±3.50 96.5±2.45 96.5±2.45 94.4±3.85 95.0±2.45 96.5±2.45 96.5±2.45 

NN: nearest neighbor; KNN: K-nearest neighbor; NS: nearest subspace; SRC: sparse representation based classification. INN, IKNN, INS, and 
ISRC are the improved NN, KNN, NS, and SRC, respectively. PCA: principal component analysis; LPP: locality preserving projections; NPE: 
neighborhood preserving embedding; S-LPP: supervised LPP; S-NPE: supervised NPE; MMC: maximum margin criterion, SPP: sparsity 
preserving projections 

Fig. 7  The recognition accuracy of KNN and IKNN
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Table 3  Best average recognition accuracy on the YaleB face database using different feature extraction algorithms 

Recognition accuracy (%) 
Method 

PCA LPP NPE S-LPP S-NPE MMC SPP 

NN 66.8±0.87 67.1±2.10 67.4±1.43 88.4±0.12 90.2±0.57 92.4±0.69 67.4±1.45 

INN 93.8±0.64 93.9±0.91 94.0±0.79 87.4±0.40 93.9±0.52 92.4±0.86 94.1±0.27 

KNN 66.0±0.87 67.3±1.75 68.1±2.13 88.5±0.12 89.5±1.03 91.9±0.40 68.1±1.19 

IKNN 94.6±0.5 94.6±0.14 94.7±0.09 88.5±0.17 93.8±0.57 92.6±0.29 94.5±0.30 

NS 95.2±0.34 95.2±0.40 95.3±0.48 88.3±0.07 94.0±0.69 74.3±0.86 95.4±0.58 

INS 97.5±0.17 97.6±0.40 97.7±0.36 91.9±0.20 94.8±0.52 93.4±0.93 97.7±0.30 

SRC 98.0±0.30 98.2±0.25 98.1±0.30 86.3±0.86 87.3±0.86 86.3±0.86 97.9±1.11 

ISRC 98.1±0.30 98.2±0.34 98.1±0.30 86.3±0.92 87.3±0.92 86.3±0.88 98.2±0.18 

NN: nearest neighbor; KNN: K-nearest neighbor; NS: nearest subspace; SRC: sparse representation based classification. INN, IKNN, INS, and 
ISRC are the improved NN, KNN, NS, and SRC, respectively. PCA: principal component analysis; LPP: locality preserving projections; NPE: 
neighborhood preserving embedding; S-LPP: supervised LPP; S-NPE: supervised NPE; MMC: maximum margin criterion, SPP: sparsity 
preserving projections 

Table 4  Best average recognition accuracy on the CMU PIE face database using different feature extraction algorithms

Recognition accuracy (%) 
Method 

PCA LPP NPE S-LPP S-NPE MMC SPP 

NN 89.4±0.76 90.2±0.51 89.6±0.17 93.1±0.58 74.8±0.77 94.9±0.29 90.3±0.58 

INN 94.0±0.18 93.3±0.13 94.1±0.11 94.2±0.99 94.1±0.20 97.1±0.16 94.3±0.11 

KNN 85.1±0.84 89.7±0.25 89.6±0.52 93.2±0.78 69.3±0.44 94.8±0.26 89.8±0.17 

IKNN 94.3±0.50 93.5±0.03 94.0±0.40 94.1±1.71 94.0±0.19 96.8±0.12 93.4±0.14 

NS 97.2±0.29 94.7±0.12 96.3±0.05 94.9±0.66 97.3±0.17 70.4±2.29 94.8±0.11 

INS 97.8±0.14 94.8±0.18 97.1±0.06 95.6±0.36 97.3±0.21 94.1±0.14 94.9±0.13 

SRC 97.6±0.27 98.3±0.35 97.4±0.30 97.4±0.23 97.4±0.11 96.2±0.06 96.7±0.31 

ISRC 98.1±0.12 98.3±0.44 97.5±0.40 97.5±0.23 97.5±0.14 97.7±0.08 97.2±0.38 

NN: nearest neighbor; KNN: K-nearest neighbor; NS: nearest subspace; SRC: sparse representation based classification. INN, IKNN, INS, and 
ISRC are the improved NN, KNN, NS, and SRC, respectively. PCA: principal component analysis; LPP: locality preserving projections; NPE: 
neighborhood preserving embedding; S-LPP: supervised LPP; S-NPE: supervised NPE; MMC: maximum margin criterion, SPP: sparsity 
preserving projections 

Table 2  Best average recognition accuracy on the Yale face database using different feature extraction algorithms 

Recognition accuracy (%) 
Method 

PCA LPP NPE S-LPP S-NPE MMC SPP 

NN 66.0±4.67 67.3±4.66 67.7±3.73 79.5±1.86 79.1±0.93 78.0±4.67 68.7±4.67 

INN 70.5±6.53 70.1±7.46 71.1±8.40 79.5±1.86 79.2±1.87 81.3±9.33 71.5±7.47 

KNN 67.1±8.40 67.3±4.66 68.3±5.60 78.4±3.73 79.1±0.93 77.9±1.87 68.3±5.60 

IKNN 70.0±4.67 70.0±4.67 70.4±3.73 79.2±1.87 79.2±1.87 79.1±8.40 71.3±4.66 

NS 70.7±5.34 71.5±7.47 71.9±6.54 81.5±2.80 82.4±3.73 69.1±3.74 79.5±7.47 

INS 84.4±8.40 81.3±9.33 81.7±8.40 81.5±2.80 82.8±2.80 80.0±9.33 82.1±7.46 

SRC 83.5±7.47 80.9±5.60 79.9±6.54 81.5±2.80 82.8±2.80 78.0±4.67 79.5±7.47 

ISRC 85.1±3.74 82.0±4.67 82.4±3.73 81.5±2.80 82.8±2.80 79.1±8.40 82.8±2.80 

NN: nearest neighbor; KNN: K-nearest neighbor; NS: nearest subspace; SRC: sparse representation based classification. INN, IKNN, INS, and 
ISRC are the improved NN, KNN, NS, and SRC, respectively. PCA: principal component analysis; LPP: locality preserving projections; NPE: 
neighborhood preserving embedding; S-LPP: supervised LPP; S-NPE: supervised NPE; MMC: maximum margin criterion, SPP: sparsity 
preserving projections 
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2. SRC almost always outperforms NN, KNN, 
and NS because of its properly harnessed sparsity. For 
PCA, LPP, etc., ISRC stays competitive and even 
slightly outperforms the highly effective SRC. For 
example, on the small Yale face database, PCA+ISRC 
achieves an average recognition accuracy of 85.1% 
compared to 83.5% of PCA+SRC; on the large YaleB 
face database, PCA+ISRC achieves an average rec-
ognition accuracy of 98.1% compared to 98.0% of 
PCA+SRC. 

3. The supervised classifier usually possesses 
better accuracy in classification compared with un-
supervised ones. In most cases, reconstruction based 
NS and SRC achieve higher recognition accuracy 
than distance based NN and KNN, and INS and ISRC 
achieve higher recognition accuracy than INN and 
IKNN. For example, on the Yale database, PCA+NS 
and PCA+SRC lead to 4.7% and 17.5% of average 
improvement in comparison with PCA+NN, respec-
tively; PCA+INS and PCA+ISRC lead to 13.9% and 
14.6% of average improvement in comparison with 
PCA+INN, respectively. 

4. It is well known that different classifiers sig-
nificantly affect the recognition performance of the 
feature extractor. For example, on the YaleB face 
database, PCA+NN achieves the best average recog-
nition accuracy of 66.8% compared to 95.2% for 
PCA+NS. However, the feature extractors are insen-
sitive to our proposed improved classifiers. For ex-
ample, on the YaleB face database, PCA+INN, PCA+ 
IKNN, PCA+INS, and PCA+ISRC achieve the best 
average recognition accuracies of 93.8%, 94.6%, 
97.5%, and 98.1%, respectively. 

Robustness to corruption and occlusion is a 
critical issue in face recognition (Wright et al., 2009) 
and is the reason why SRC outperforms NN, KNN, 
and NS. To verify whether our proposed improved 
classifiers have the virtue of robustness to corruption 
and occlusion, we design the recognition experiment 
under random corruption and occlusion conditions. 
We process the test data set with white Gaussian noise 
and crops, respectively, and some facial images with 
corruption and occlusion are shown in Fig. 8. 

Fig. 9 illustrates the recognition accuracy of the 
classifiers on the CMU PIE database with different 
intensities of white Gaussian noise and different oc-
clusion sizes. Here, PCA is adopted as the feature 
extractor, and the signal-to-noise ratio (SNR) is used 

to denote the intensity of noise: 
 

  SNR 10lg( / ),S N                    (19) 
 

where S is the signal intensity and N is the noise  
intensity. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Fig. 9 we have the following observations: 
1. The robustness of the SRC algorithm has been 

proved experimentally on the face database with 
noise and occlusions in Wright et al. (2009). As 
shown in Fig. 9, SRC outperforms NN, KNN, and  
NS in recognition accuracy. For example, when  
SNR is set to 2 dB, NN, KNN, and NS achieve  
recognition accuracies of 6.12%, 5.36%, and 22.35%,  
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Fig. 9  Comparison of recognition accuracy with different
noise intensities (a) or different occlusion sizes (b) on the 
CMU PIE face database 
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Fig. 8  Facial images with white Gaussian noise (a) or
occlusion (b) 
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respectively, while SRC achieves a recognition ac-
curacy of 28.9%; when the occlusion ratio is set to 
0.375, NN, KNN, and NS achieve recognition accu-
racies of 3.82%, 3.51%, and 36.38%, respectively, 
while SRC achieves a recognition accuracy of 
36.73%. 

2. ISRC maintains the good robustness of SRC 
and outperforms INN, IKNN, and INS. For example, 
when SNR is set to 2 dB, INN, IKNN, and INS 
achieve recognition accuracies of 6.49%, 6.57%, and 
23.35%, respectively, while ISRC achieves a recog-
nition accuracy of 30.64%; when the occlusion ratio 
is set to 0.375, INN, IKNN, and INS achieve recog-
nition accuracies of 13.85%, 15.13%, and 37.35%, 
respectively, while ISRC achieves a recognition ac-
curacy of 37.79%. 

3. NN and INN, KNN and IKNN, NS and INS, 
as well as SRC and ISRC, have the same attenuation 
characteristics respectively when the intensity of 
noise or the occlusion size is increased, which indi-
cates that the improved classifiers properly inherit the 
traits of conventional classifiers. 

 
 

5  Conclusions 
 

In this paper we propose a novel fast classifica-
tion scheme. A distance from sample to class (SCD) is 
defined as the classification metric. We exploit a new 
measure called the reconstruction proportion to re-
flect discriminant information and obtain a new space 
called the ‘reconstruction space’, by solving an op-
timization Frobenius norm problem. Samples are 
classified after being mapped to the reconstruction 
space. By this method, the high complexity calcula-
tions, such as calculation of distances and recon-
struction of samples, are shifted from the recognition 
or classification phase to the training phase. The 
classification of a new sample can be efficiently 
performed as long as the projection from the sample 
space to the reconstruction space is obtained. We 
focus the proposed scheme on four popular classifiers, 
namely nearest neighbor (NN), K-nearest neighbor 
(KNN), nearest subspace (NS), and sparse represen-
tation based classifier (SRC), due to their representa-
tiveness. Improved nearest neighbor (INN), improved 
K-nearest neighbor (IKNN), improved nearest sub-
space (INS), and improved sparse representation 

based classifier (ISRC) can identify a facial image 
more accurately and efficiently when high complexity 
calculations are performed in the preprocessing phase 
instead of the recognition phase. Experimental results 
show that INN, IKNN, and INS outperform the con-
ventional NN, KNN, and NS in recognition efficiency 
and classification accuracy. It is evident that ISRC is 
not only computationally efficient, but is also of high 
robustness. We will explore in our future work 
whether this framework can be extended to other 
non-Euclidean distance based classifiers. 
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