CLC number: R775
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-03-11
Cited: 0
Clicked: 4863
Li-Juan Xu, Sha-Ling Li, Vance Zemon, Yan-Qian Xie, Yuan-Bo Liang. Central visual function and inner retinal structure in primary open-angle glaucoma[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1900506 @article{title="Central visual function and inner retinal structure in primary open-angle glaucoma", %0 Journal Article TY - JOUR
原发性开角型青光眼黄斑区视网膜内层结构和功能的关系创新点:POAG的潜在原因是视网膜神经节细胞(RGC)的丢失.虽然在传统上我们可以通过测量视网膜后极部约30°的结构和功能来评估青光眼性视神经损害,但是50%的RGC存在于黄斑区4.5 mm范围内.本研究关注黄斑区约10°范围视网膜结构和功能的关系,有助于更早地监测到青光眼性视神经损害. 方法:本研究纳入了78例POAG患者及58例健康对照者,其中POAG分为早期青光眼(EG)和中晚期青光眼(AG).所有受试者均进行了以下检测:分离格栅视觉诱发电位(icVEP)、标准自动视野计(SAP)及光学相干断层扫描(OCT).icVEP检测时给予8%、14%、22%及32%对比度刺激,采集相应的信躁比(SNR).黄斑区视野敏感度(mMS)通过计算黄斑中心12点的敏感度平均值获得.OCT扫描包括视网膜神经节细胞层+内丛状层的平均厚度(GCL+IPLT)及视盘周围神经纤维层平均厚度(pRNFLT).我们比较了各组间SNR、mMS、GCL+IPLT及pRNFLT值,并分析了结构性指标和功能性指标之间的相关性. 结论:POAG组患者的SNR、mMS、GCL+IPLT及pRNFLT均较正常对照组显著下降(所有P值<0.001).在早期青光眼中,SNR及mMS均与视网膜内层厚度呈中度相关;而在中晚期青光眼中,mMS与视网膜内层厚度呈高度相关. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bartz-Schmidt KU, Thumann G, Jonescu-Cuypers CP, et al., 1999. Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol, 44(Suppl 1):S41-S53. ![]() [2]Budenz DL, Rhee P, Feuer WJ, et al., 2002. Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms. Arch Ophthalmol, 120(9):1136-1141. ![]() [3]Curcio CA, Allen KA, 1990. Topography of ganglion cells in human retina. J Comp Neurol, 300(1):5-25. ![]() [4]de Moraes CG, Sun A, Jarukasetphon R, et al., 2019. Association of macular visual field measurements with glaucoma staging systems. JAMA Ophthalmol, 137(2):139-145. ![]() [5]Garway-Heath DF, Caprioli J, Fitzke FW, et al., 2000. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci, 41(7):1774-1782. ![]() [6]Glovinsky Y, Quigley HA, Dunkelberger GR, 1991. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci, 32(3):484-491. ![]() [7]Glovinsky Y, Quigley HA, Pease ME, 1993. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci, 34(2):395-400. ![]() [8]Greenstein VC, Seliger S, Zemon V, et al., 1998. Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vision Res, 38(12):1901-1911. ![]() [9]Gutowitz H, Zemon V, Victor J, et al., 1986. Source geometry and dynamics of the visual evoked potential. Electroencephalogr Clin Neurophysiol, 64(4):308-327. ![]() [10]Harwerth RS, Carter-Dawson L, Shen F, et al., 1999. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci, 40(10):2242-2250. ![]() [11]Harwerth RS, Vilupuru AS, Rangaswamy NV, et al., 2007. The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci, 48(2):763-773. ![]() [12]Harwerth RS, Wheat JL, Fredette MJ, et al., 2010. Linking structure and function in glaucoma. Prog Retin Eye Res, 29(4):249-271. ![]() [13]Hood DC, Anderson SC, Wall M, et al., 2007. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci, 48(8):3662-3668. ![]() [14]Hood DC, Raza AS, de Moraes CGV, et al., 2013. Glaucomatous damage of the macula. Prog Retin Eye Res, 32: 1-21. ![]() [15]Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al., 2000. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci, 41(3):741-748. ![]() [16]Kim KE, Park KH, Jeoung JW, et al., 2014. Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma. Acta Ophthalmol, 92(8):e650-e656. ![]() [17]Mwanza JC, Oakley JD, Budenz DL, et al., 2011. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci, 52(11):8323-8329. ![]() [18]Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, et al., 2013. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol, 156(6):1297-1307.e2. ![]() [19]Quigley HA, 1999. Neuronal death in glaucoma. Prog Retin Eye Res, 18(1):39-57. ![]() [20]Quigley HA, Dunkelberger GR, Green WR, 1989. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol, 107(5):453-464. ![]() [21]van Buskirk EM, Cioffi GA, 1992. Glaucomatous optic neuropathy. Am J Ophthalmol, 113(4):447-452. ![]() [22]Xu LJ, Zhang L, Li SL, et al., 2017. Accuracy of isolated-check visual evoked potential technique for diagnosing primary open-angle glaucoma. Doc Ophthalmol, 135(2):107-119. ![]() [23]Yanashima K, 1982. Surface distribution of steady-state cortical potentials evoked by visual half-field stimulation. Graefes Arch Clin Exp Ophthalmol, 218(3):118-123. ![]() [24]Zemon V, Eisner W, Gordon J, et al., 1995. Contrast-dependent responses in the human visual system: childhood through adulthood. Int J Neurosci, 80(1-4):181-201. ![]() [25]Zemon V, Tsai JC, Forbes M, et al., 2008. Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma. Doc Ophthalmol, 117(3):233-243. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>