Full Text:   <13201>

CLC number: TP18

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-07-24

Cited: 0

Clicked: 3973

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yi MA

https://orcid.org/0000-0001-5485-419X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.9 P.1298-1323

http://doi.org/10.1631/FITEE.2200297


On the principles of Parsimony and Self-consistency for the emergence of intelligence


Author(s):  Yi MA, Doris TSAO, Heung-Yeung SHUM

Affiliation(s):  Electrical Engineering and Computer Science Department, University of California, Berkeley, CA 94720, USA; more

Corresponding email(s):   yima@eecs.berkeley.edu, dortsao@berkeley.edu, hshum@idea.edu.cn

Key Words:  Intelligence, Parsimony, Self-consistency, Rate reduction, Deep networks, Closed-loop transcription



Abstract: 
Ten years into the revival of deep networks and artificial intelligence, we propose a theoretical framework that sheds light on understanding deep networks within a bigger picture of intelligence in general. We introduce two fundamental principles, parsimony and self-consistency, which address two fundamental questions regarding intelligence: what to learn and how to learn, respectively. We believe the two principles serve as the cornerstone for the emergence of intelligence, artificial or natural. While they have rich classical roots, we argue that they can be stated anew in entirely measurable and computable ways. More specifically, the two principles lead to an effective and efficient computational framework, compressive closed-loop transcription, which unifies and explains the evolution of modern deep networks and most practices of artificial intelligence. While we use mainly visual data modeling as an example, we believe the two principles will unify understanding of broad families of autonomous intelligent systems and provide a framework for understanding the brain.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE