[1] Allwein, E.L., Schapire, R.E., Singer, Y., 2000. Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res., 1:113-141.
[2] Alpaydin, E., Mayoraz, E., 1998. Combining Linear Dichomotizers to Construct Nonlinear Polychotomizers. Technical Report IDIAP-RR, Switzerland.
[3] Angulo, C., Parra, X., Catala, A., 2003. K-SVCR. A support vector machine for multi-class classification. Neurocomputing, 55(1-2):57-77.
[4] Aurenhammer, F., Klein, R., 2000. Voronoi Diagram. In: Sack, J.R., Urrutia, J. (Eds.), Handbook of Computational Geometry. Elsevier Science Publishers, B.V. North-Holland, Amsterdam, p.201-290.
[5] Blake, C.L., Merz, C.J., 1998. UCI Repository of Machine Learning Databases. University of California, Irvine. Http://www.ics.uci.edu/mlearn/MLRepository.html
[6] Bredensteiner, E.J., Bennett, K.P., 1999. Multicategory classification by support vector machines. Comput. Optim. Appl., 12:53-79.
[7] Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A., 2005. SVM and Kernel Methods Matlab Toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France.
[8] Cortes, C., Vapnik, V., 1995. Support vector networks. Machine Learning, 20(3):273-297.
[9] Crammer, K., Singer, Y., 2002. On the learnability and design of output codes for multiclass problems. Machine Learning, 47(2-3):201-233.
[10] Dietterich, T.G., Bakiri, G., 1995. Solving multiclass learning problem via error-correcting output codes. J. Artif. Intell. Res., 2:263-286.
[11] Guermeur, Y., Elisseeff, A., Paugam-Moisy, H., 2000. A New Multi-class SVM Based on a Uniform Convergence Result. Proc. IJCNN, Como, Italy, 4:183-188.
[12] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R., 2000. A fast iterative nearest point algorithm for support vector machineclassifier design. IEEE Trans. Neural Networks, 11(1):124-136.
[13] Kowalczyk, A., 2000. Maximal Margin Perceptron. In: Smola, A.J., Bartlett, P.L., Scholkopf, B., Schuurmans, D. (Eds.), Advances in Large Margin Classifiers. MIT Press, Cambrige, MA, p.75-113.
[14] Martinez, A.M., Benavente, R., 1998. The AR Face Database. Technical Report, CVC.
[15] Mayoraz, E., Alpaydin, E., 1999. Support Vector Machines for Multi-class Classification. Proc. IWANN, Alicante, Spain, p.833-842.
[16] Moreira, M., Mayoraz, E., 1998. Improved Pairwise Coupling Classification with Correcting Classifiers. Proc. ECML, Chemnitz, Germany, p.160-171.
[17] Platt, J., Cristianini, N., Shawe-Taylor, J., 2000. Large Margin DAGs for Multiclass Classification. In: Solla, S.A., Leen, T.K., Müller, K.R. (Eds.), Advance in Neural Information Process Systems. MIT Press, Cambridge, MA, p.547-553.
[18] Swets, D.L., Weng, J., 1996. Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 18(8):831-836.
[19] Vapnik, V., 2000. The Nature of Statistical Learning Theory. Springer, New York.
[20] Weston, J., Watkins, C., 1998. Multi-class Support Vector Machines. Technical Report, CSD-TR-98-04. Royal Holloway, University of London, Egham, UK.
Open peer comments: Debate/Discuss/Question/Opinion
<1>