Full Text:   <2200>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3060

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2021 Vol.4 No.2 P.190-202

http://doi.org/10.1007/s42242-020-00116-1


In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering


Author(s):  Edney P. e Silva, Boyang Huang, Júlia V. Helaehil, Paulo R. L. Nalesso, Leonardo Bagne, Maraiara A. de Oliveira, Gabriela C. C. Albiazetti, Ali Aldalbahi, Mohamed El-Newehy, Milton Santamaria-Jr, Fernanda A. S. Mendonça, Paulo Bártolo & Guilherme F. Caetano

Affiliation(s):  Postgraduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil; more

Corresponding email(s):   paulojorge.dasilvabartolo@manchester.ac.uk, caetanogf@fho.edu.br

Key Words:  Additive manufacturing, Bone regeneration, Bone remodeling, Carbon nanotube, Conductive scaffolds, Electrical stimulation


Share this article to: More

Edney P. e Silva, Boyang Huang, Júlia V. Helaehil, Paulo R. L. Nalesso, Leonardo Bagne, Maraiara A. de Oliveira, Gabriela C. C. Albiazetti, Ali Aldalbahi, Mohamed El-Newehy, Milton Santamaria-Jr, Fernanda A. S. Mendonça, Paulo Bártolo & Guilherme F. Caetano . In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering[J]. Journal of Zhejiang University Science D, 2021, 4(2): 190-202.

@article{title="In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering",
author="Edney P. e Silva, Boyang Huang, Júlia V. Helaehil, Paulo R. L. Nalesso, Leonardo Bagne, Maraiara A. de Oliveira, Gabriela C. C. Albiazetti, Ali Aldalbahi, Mohamed El-Newehy, Milton Santamaria-Jr, Fernanda A. S. Mendonça, Paulo Bártolo & Guilherme F. Caetano ",
journal="Journal of Zhejiang University Science D",
volume="4",
number="2",
pages="190-202",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-020-00116-1"
}

%0 Journal Article
%T In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering
%A Edney P. e Silva
%A Boyang Huang
%A Júlia V. Helaehil
%A Paulo R. L. Nalesso
%A Leonardo Bagne
%A Maraiara A. de Oliveira
%A Gabriela C. C. Albiazetti
%A Ali Aldalbahi
%A Mohamed El-Newehy
%A Milton Santamaria-Jr
%A Fernanda A. S. Mendonça
%A Paulo Bártolo & Guilherme F. Caetano
%J Journal of Zhejiang University SCIENCE D
%V 4
%N 2
%P 190-202
%@ 1869-1951
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-020-00116-1

TY - JOUR
T1 - In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering
A1 - Edney P. e Silva
A1 - Boyang Huang
A1 - Júlia V. Helaehil
A1 - Paulo R. L. Nalesso
A1 - Leonardo Bagne
A1 - Maraiara A. de Oliveira
A1 - Gabriela C. C. Albiazetti
A1 - Ali Aldalbahi
A1 - Mohamed El-Newehy
A1 - Milton Santamaria-Jr
A1 - Fernanda A. S. Mendonça
A1 - Paulo Bártolo & Guilherme F. Caetano
J0 - Journal of Zhejiang University Science D
VL - 4
IS - 2
SP - 190
EP - 202
%@ 1869-1951
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-020-00116-1


Abstract: 
Critical bone defects are considered one of the major clinical challenges in reconstructive bone surgery. The combination of 3D printed conductive scaffolds and exogenous electrical stimulation (ES) is a potential favorable approach for bone tissue repair. In this study, 3D conductive scaffolds made with biocompatible and biodegradable polycaprolactone (PCL) and multi-walled carbon nanotubes (MWCNTs) were produced using the extrusion-based additive manufacturing to treat large calvary bone defects in rats. Histology results show that the use of PCL/MWCNTs scaffolds and ES contributes to thicker and increased bone tissue formation within the bone defect. Angiogenesis and mineralization are also significantly promoted using high concentration of MWCNTs (3 wt%) and ES. Moreover, scaffolds favor the tartrate-resistant acid phosphatase (TRAP) positive cell formation, while the addition of MWCNTs seems to inhibit the osteoclastogenesis but present limited effects on the osteoclast functionalities (receptor activator of nuclear factor κβ ligand (RANKL) and osteoprotegerin (OPG) expressions). The use of ES promotes the osteoclastogenesis and RANKL expressions, showing a dominant effect in the bone remodeling process. These results indicate that the combination of 3D printed conductive PCL/MWCNTs scaffold and ES is a promising strategy to treat critical bone defects and provide a cue to establish an optimal protocol to use conductive scaffolds and ES for bone tissue engineering.

本刊编委Paulo Bártolo团队 | 3D打印的导电PCL/MWCNTs支架与电刺激用于骨组织工程的体内研究

严重的骨缺损被认为是重建骨手术的主要临床挑战之一。3D 打印导电支架和外源性电刺激 (ES) 的组合是骨组织修复的潜在有利方法。在这项研究中,使用基于挤出的增材制造方法生产了由具有生物相容性和可生物降解的聚己内酯 (PCL) 和多壁碳纳米管 (MWCNT) 制成的 3D 导电支架,以治疗大鼠的大颅骨缺损。组织学结果表明,使用 PCL/MWCNTs 支架和 ES 有助于在骨缺损内形成更厚和增加的骨组织。使用高浓度的多壁碳纳米管 (3 wt%) 和 ES 也显著促进了血管生成和矿化。此外,支架有利于抗酒石酸酸性磷酸酶(TRAP)阳性细胞的形成,而添加MWCNTs看似能够抑制破骨细胞的形成,但对破骨细胞功能(核因子κβ配体(RANKL)和骨保护素(OPG)的表达)的影响有限。ES 的使用促进破骨细胞生成和 RANKL 表达,在骨重塑过程中显示出主导作用。这些结果表明,3D 打印导电 PCL/MWCNTs 支架和 ES 的组合是治疗关键骨缺损的有前途的策略,并为建立使用导电支架和 ES 进行骨组织工程的最佳方案提供了线索。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE