CLC number:
On-line Access: 2022-10-26
Received: 2022-04-26
Revision Accepted: 2022-09-18
Crosschecked: 0000-00-00
Cited: 0
Clicked: 735
Yeokyung Kang, Dasol Lim, Doo-Hoon Sun, Jong-Chul Park & Jungsung Kim. Design, fabrication, and structural safety validation of 3D-printable biporous bone augments[J]. Journal of Zhejiang University Science D, 2023, 6(1): 26-37.
@article{title="Design, fabrication, and structural safety validation of 3D-printable biporous bone augments",
author="Yeokyung Kang, Dasol Lim, Doo-Hoon Sun, Jong-Chul Park & Jungsung Kim",
journal="Journal of Zhejiang University Science D",
volume="6",
number="1",
pages="26-37",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-022-00214-2"
}
%0 Journal Article
%T Design, fabrication, and structural safety validation of 3D-printable biporous bone augments
%A Yeokyung Kang
%A Dasol Lim
%A Doo-Hoon Sun
%A Jong-Chul Park & Jungsung Kim
%J Journal of Zhejiang University SCIENCE D
%V 6
%N 1
%P 26-37
%@ 1869-1951
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-022-00214-2
TY - JOUR
T1 - Design, fabrication, and structural safety validation of 3D-printable biporous bone augments
A1 - Yeokyung Kang
A1 - Dasol Lim
A1 - Doo-Hoon Sun
A1 - Jong-Chul Park & Jungsung Kim
J0 - Journal of Zhejiang University Science D
VL - 6
IS - 1
SP - 26
EP - 37
%@ 1869-1951
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-022-00214-2
Abstract: The use of commercial products such as a cup and liner for total hip arthroplasty for patients with severe bone defects has a high probability of failure. In these patients the cup alone cannot cover the bone defect, and thus, an additional augment or cage is required. In this study, we designed three-dimensional (3D) printable bone augments as an alternative to surgeries using reinforcement cages. Thirty-five sharp-edged bone augments of various sizes were 3D printed. A biporous structure was designed to reduce the weight of the augment and to facilitate bone ingrowth. Two types of frames were used to prevent damage to the augments porous structure and maintain its stability during printing. Furthermore, two types of holes were provided for easy augment fixation at various angles. Fatigue tests were performed on a combination of worst-case sizes derived using finite element analysis. The test results confirmed the structural stability of the specimens at a load of 5340 N. Although the porosity of the specimens was measured to be 63.70%, it cannot be said that the porous nature was uniformly distributed because porosity tests were performed locally and randomly. In summary, 3D-printable biporous bone augments capable of bonding from various angles and bidirectionally through angulation and bottom-plane screw holes are proposed. The mechanical results with bone augments indicate good structural safety in patients. However, further research is necessary to study the clinical applications of the proposed bone augment.
Open peer comments: Debate/Discuss/Question/Opinion
<1>