Full Text:   <98>

CLC number: 

On-line Access: 2024-03-26

Received: 2023-07-26

Revision Accepted: 2023-11-20

Crosschecked: 0000-00-00

Cited: 0

Clicked: 159

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2024 Vol.7 No.2 P.137-152

http://doi.org/10.1007/s42242-023-00263-1


3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing


Author(s):  Xiaoyuan Wang, Zixian Liu, Qianqian Duan, Boye Zhang, Yanyan Cao, Zhizhong Shen, Meng Li, Yanfeng Xi, Jianming Wang & Shengbo Sang

Affiliation(s):  Shanxi Key Laboratory of Micro Nano Sensors and Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; more

Corresponding email(s):   sunboa-sang@tyut.edu.cn

Key Words:  3D bioprinting, Hepatoma tumor models, Drug screening, Antitumor drug development


Share this article to: More

Xiaoyuan Wang, Zixian Liu, Qianqian Duan, Boye Zhang, Yanyan Cao, Zhizhong Shen, Meng Li, Yanfeng Xi, Jianming Wang & Shengbo Sang. 3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing[J]. Journal of Zhejiang University Science D, 2024, 7(2): 137-152.

@article{title="3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing",
author="Xiaoyuan Wang, Zixian Liu, Qianqian Duan, Boye Zhang, Yanyan Cao, Zhizhong Shen, Meng Li, Yanfeng Xi, Jianming Wang & Shengbo Sang",
journal="Journal of Zhejiang University Science D",
volume="7",
number="2",
pages="137-152",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-023-00263-1"
}

%0 Journal Article
%T 3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing
%A Xiaoyuan Wang
%A Zixian Liu
%A Qianqian Duan
%A Boye Zhang
%A Yanyan Cao
%A Zhizhong Shen
%A Meng Li
%A Yanfeng Xi
%A Jianming Wang & Shengbo Sang
%J Journal of Zhejiang University SCIENCE D
%V 7
%N 2
%P 137-152
%@ 1869-1951
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-023-00263-1

TY - JOUR
T1 - 3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing
A1 - Xiaoyuan Wang
A1 - Zixian Liu
A1 - Qianqian Duan
A1 - Boye Zhang
A1 - Yanyan Cao
A1 - Zhizhong Shen
A1 - Meng Li
A1 - Yanfeng Xi
A1 - Jianming Wang & Shengbo Sang
J0 - Journal of Zhejiang University Science D
VL - 7
IS - 2
SP - 137
EP - 152
%@ 1869-1951
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-023-00263-1


Abstract: 
Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs. To address this, this study describes the use of threedimensional (3D) bioprinting technology to construct a 3D model with human hepatocarcinoma SMMC-7721 cells (3DP- 7721) by combining gelatin methacrylate (GelMA) and poly(ethylene oxide) (PEO) as two immiscible aqueous phases to form a bioink and innovatively applying fluorescent carbon quantum dots for long-term tracking of cells. The GelMA (10%, mass fraction) and PEO (1.6%, mass fraction) hydrogel with 3:1 volume ratio offered distinct pore-forming characteristics, satisfactory mechanical properties, and biocompatibility for the creation of the 3DP-7721 model. Immunofluorescence analysis and quantitative real-time fluorescence polymerase chain reaction (PCR) were used to evaluate the biological properties of the model. Compared with the two-dimensional culture cell model (2D-7721) and the 3D mixed culture cell model (3DM-7721), 3DP-7721 significantly improved the proliferation of cells and expression of tumor-related proteins and genes. Moreover, we evaluated the differences between the three culture models and the effectiveness of antitumor drugs in the three models and discovered that the efficacy of antitumor drugs varied because of significant differences in resistance proteins and genes between the three models. In addition, the comparison of tumor formation in the three models found that the cells cultured by the 3DP-7721 model had strong tumorigenicity in nude mice. Immunohistochemical evaluation of the levels of biochemical indicators related to the formation of solid tumors showed that the 3DP-7721 model group exhibited pathological characteristics of malignant tumors, the generated solid tumors were similar to actual tumors, and the deterioration was higher. This research therefore acts as a foundation for the application of 3DP-7721 models in drug development research.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE