Full Text:   <13071>

Summary:  <2119>

CLC number: TN911.7; O29

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-01-14

Cited: 4

Clicked: 12713

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Liu

http://orcid.org/0000-0003-2968-2888

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.2 P.83-95

http://doi.org/10.1631/FITEE.1500334


Properties of a general quaternion-valued gradient operator and its applications to signal processing


Author(s):  Meng-di Jiang, Yi Li, Wei Liu

Affiliation(s):  1Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK; more

Corresponding email(s):   w.liu@sheffield.ac.uk

Key Words:  Quaternion, Gradient operator, Signal processing, Least mean square (LMS) algorithm, Nonlinear adaptive filtering, Adaptive beamforming


Share this article to: More |Next Article >>>


Abstract: 
The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms. The HR gradient operator provides a viable framework and has found a number of applications. However, the applications so far have been limited to mainly real-valued quaternion functions and linear quaternion-valued functions. To generalize the operator to nonlinear quaternion functions, we define a restricted version of the HR operator, which comes in two versions, the left and the right ones. We then present a detailed analysis of the properties of the operators, including several different product rules and chain rules. Using the new rules, we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions, and prove that the restricted HR gradients are consistent with the gradients in the real domain. As an application, the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided. Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE