Full Text:   <2447>

Summary:  <1890>

CLC number: TP311

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-01-30

Cited: 0

Clicked: 7173

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jia-cheng Pan

https://orcid.org/0000-0002-8676-9990

Wei Chen

https://orcid.org/0000-0002-8365-4741

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.4 P.491-506

http://doi.org/10.1631/FITEE.1900310


RCAnalyzer: visual analytics of rare categories in dynamic networks


Author(s):  Jia-cheng Pan, Dong-ming Han, Fang-zhou Guo, Da-wei Zhou, Nan Cao, Jing-rui He, Ming-liang Xu, Wei Chen

Affiliation(s):  State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   panjiacheng@zju.edu.cn, chenvis@zju.edu.cn

Key Words:  Rare category detection, Dynamic network, Visual analytics


Share this article to: More |Next Article >>>


Abstract: 
A dynamic network refers to a graph structure whose nodes and/or links dynamically change over time. Existing visualization and analysis techniques focus mainly on summarizing and revealing the primary evolution patterns of the network structure. Little work focuses on detecting anomalous changing patterns in the dynamic network, the rare occurrence of which could damage the development of the entire structure. In this study, we introduce the first visual analysis system RCAnalyzer designed for detecting rare changes of sub-structures in a dynamic network. The proposed system employs a rare category detection algorithm to identify anomalous changing structures and visualize them in the context to help oracles examine the analysis results and label the data. In particular, a novel visualization is introduced, which represents the snapshots of a dynamic network in a series of connected triangular matrices. Hierarchical clustering and optimal tree cut are performed on each matrix to illustrate the detected rare change of nodes and links in the context of their surrounding structures. We evaluate our technique via a case study and a user study. The evaluation results verify the effectiveness of our system.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE