Full Text:   <4609>

Summary:  <487>

CLC number: TP309

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-02-28

Cited: 0

Clicked: 2297

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhigao LU

https://orcid.org/0000-0002-2215-9843

Weike YOU

https://orcid.org/0000-0002-2642-6005

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.8 P.1143-1155

http://doi.org/10.1631/FITEE.2300041


Reversible data hiding using a transformer predictor and an adaptive embedding strategy


Author(s):  Linna ZHOU, Zhigao LU, Weike YOU, Xiaofei FANG

Affiliation(s):  School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100084, China; more

Corresponding email(s):   zhoulinna@bupt.edu.cn, luchen@uir.edu.cn, ywk@bupt.edu.cn

Key Words:  Reversible data hiding, Transformer, Adaptive embedding strategy



Abstract: 
In the field of reversible data hiding (RDH), designing a high-precision predictor to reduce the embedding distortion and developing an effective embedding strategy to minimize the distortion caused by embedding information are the two most critical aspects. In this paper, we propose a new RDH method, including a predictor based on a transformer and a novel embedding strategy with multiple embedding rules. In the predictor part, we first design a transformer-based predictor. Then, we propose an image division method to divide the image into four parts, which can use more pixels as context. Compared with other predictors, the transformer-based predictor can extend the range of pixels for prediction from neighboring pixels to global ones, making it more accurate in reducing the embedding distortion. In the embedding strategy part, we first propose a complexity measurement with pixels in the target blocks. Then, we develop an improved prediction error ordering rule. Finally, we provide an embedding strategy including multiple embedding rules for the first time. The proposed RDH method can effectively reduce the distortion and provide satisfactory results in improving the visual quality of data-hidden images, and experimental results show that the performance of our RDH method is leading the field.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE