CLC number: TN722.1
On-line Access: 2025-07-02
Received: 2024-10-14
Revision Accepted: 2025-07-02
Crosschecked: 2025-02-10
Cited: 0
Clicked: 432
Citations: Bibtex RefMan EndNote GB/T7714
Yi ZHANG, Ruibin GAO, Shuang LIU, Yujie HAN, Meng REN, Hanhui LIN, Jingzhou PANG. One-dimensional reconfigurable three-stage Doherty power amplifier with load mismatch resilience[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(6): 1002-1016.
@article{title="One-dimensional reconfigurable three-stage Doherty power amplifier with load mismatch resilience",
author="Yi ZHANG, Ruibin GAO, Shuang LIU, Yujie HAN, Meng REN, Hanhui LIN, Jingzhou PANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="6",
pages="1002-1016",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400913"
}
%0 Journal Article
%T One-dimensional reconfigurable three-stage Doherty power amplifier with load mismatch resilience
%A Yi ZHANG
%A Ruibin GAO
%A Shuang LIU
%A Yujie HAN
%A Meng REN
%A Hanhui LIN
%A Jingzhou PANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 6
%P 1002-1016
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400913
TY - JOUR
T1 - One-dimensional reconfigurable three-stage Doherty power amplifier with load mismatch resilience
A1 - Yi ZHANG
A1 - Ruibin GAO
A1 - Shuang LIU
A1 - Yujie HAN
A1 - Meng REN
A1 - Hanhui LIN
A1 - Jingzhou PANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 6
SP - 1002
EP - 1016
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400913
Abstract: This article presents a comprehensive theoretical analysis of the resilience demonstrated by the three-stage doherty power amplifier (DPA) when operating under load mismatch conditions. Additionally, a novel reconfigurable three-stage DPA architecture is introduced, with the aim of enhancing resilience to load mismatch using exceptionally simple circuits and a one-dimensional (1D) control method. To validate the efficacy of this proposed architecture and control approach, a DPA prototype employing commercial gallium nitride (GaN) active devices has been designed and meticulously fabricated at 2 GHz. With a matched 50 Ω load, the fabricated three-stage DPA achieves a high-efficiency range of 9.5 dB with larger than 51% back-off drain efficiency (DE). Through the proposed 1D control, the DPA presents 47.0%–55.1% back-off efficiency with ≤ 2 dB power fluctuation at a 2:1 voltage standing wave ratio (VSWR) over a 360° phase span. When driven by a 20 MHz long-term evolution (LTE) signal with an 8 dB peak-to-average power ratio (PAPR), the DPA achieves 46.2%–53.9% average efficiency and better than -21 dBc adjacent channel power ratio (ACPR) without digital pre-distortion (DPD) under load mismatch conditions.
[1]Barton T, 2016. Not just a phase: outphasing power amplifiers. IEEE Microw Mag, 17(2):18-31.
[2]Barton TW, Jurkov AS, Pednekar PH, et al., 2016. Multi-way lossless outphasing system based on an all-transmission-line combiner. IEEE Trans Microw Theory Techn, 64(4):1313-1326.
[3]Cao YC, Lyu HF, Chen KL, 2019. Load modulated balanced amplifier with reconfigurable phase control for extended dynamic range. Proc IEEE MTT-S Int Microwave Symp, p.1335-1338.
[4]Cao YC, Lyu HF, Chen KL, 2021. Asymmetrical load modulated balanced amplifier with continuum of modulation ratio and dual-octave bandwidth. IEEE Trans Microw Theory Techn, 69(1):682-696.
[5]Chen XC, Zhao M, Chen WH, et al., 2022. A 700-2800MHz switchless class-G power amplifier with two-quadrant modulation for back-off efficiency improvement. Proc IEEE MTT-S Int Microwave Symp, p.1-4.
[6]Donahue DT, de Falco PE, Barton TW, 2020. Power amplifier with load impedance sensing incorporated into the output matching network. IEEE Trans Circ Syst I Regul Pap, 67(12):5113-5124.
[7]Fang XH, Cheng KKM, 2014. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Trans Microw Theory Techn, 62(9):2038-2047.
[8]Fang XH, Liu HY, Cheng KKM, et al., 2018. Modified Doherty amplifier with extended bandwidth and back-off power range using optimized peak combining current ratio. IEEE Trans Microw Theory Techn, 66(12):5347-5357.
[9]Gao RB, Pang JZ, Cai TF, et al., 2022. Dual-band three-way Doherty power amplifier employing dual-mode gate bias and load compensation network. IEEE Trans Microw Theory Techn, 70(4):2328-2340.
[10]Golestaneh H, Malekzadeh FA, Boumaiza S, 2013. An extended-bandwidth three-way Doherty power amplifier. IEEE Trans Microw Theory Techn, 61(9):3318-3328.
[11]Gonçalves CF, Barradas FM, Nunes LC, et al., 2021. Dynamic supply voltage control for PA output power correction under variable loading scenarios. IEEE Trans Microw Theory Techn, 69(1):745-755.
[12]Gonçalves CF, Barradas FM, Nunes LC, et al., 2022. Quasi-load insensitive Doherty PA using supply voltage and input excitation adaptation. IEEE Trans Microw Theory Techn, 70(1):779-789.
[13]Guo JC, Cao YC, Chen KL, 2023. 1-D reconfigurable pseudo-Doherty load modulated balanced amplifier with intrinsic VSWR resilience across wide bandwidth. IEEE Trans Microw Theory Techn, 71(6):2465-2478.
[14]Hu S, Kousai S, Wang H, 2015. Antenna impedance variation compensation by exploiting a digital Doherty power amplifier architecture. IEEE Trans Microw Theory Techn, 63(2):580-597.
[15]Jang H, Roblin P, Quindroit C, et al., 2014. Asymmetric Doherty power amplifier designed using model-based nonlinear embedding. IEEE Trans Microw Theory Techn, 62(12):3436-3451.
[16]Kim J, Fehri B, Boumaiza S, et al., 2011. Power efficiency and linearity enhancement using optimized asymmetrical Doherty power amplifiers. IEEE Trans Microw Theory Techn, 59(2):425-434.
[17]Li M, Pang JZ, Li Y, et al., 2019. Ultra-wideband dual-mode Doherty power amplifier using reciprocal gate bias for 5G applications. IEEE Trans Microw Theory Techn, 67(10):4246-4259.
[18]Lv GS, Chen WH, Zhang Y, et al., 2022. A highly linear GaN MMIC Doherty power amplifier based on phase mismatch induced AM-PM compensation. IEEE Trans Microw Theory Techn, 70(2):1334-1348.
[19]Lyu H, Chen KL, 2020. Balanced-to-Doherty mode-reconfigurable power amplifier with high efficiency and linearity against load mismatch. IEEE Trans Microw Theory Techn, 68(5):1717-1728.
[20]Lyu H, Chen KL, 2022. Analysis and design of reconfigurable multiband mismatch-resilient quasi-balanced Doherty power amplifier for massive MIMO systems. IEEE Trans Microw Theory Techn, 70(10):4410-4421.
[21]Lyu H, Cao YC, Chen KL, 2021. Linearity-enhanced quasi-balanced Doherty power amplifier with mismatch resilience through series/parallel reconfiguration for massive MIMO. IEEE Trans Microw Theory Techn, 69(4):2319-2335.
[22]Neo WCE, Qureshi J, Pelk MJ, et al., 2007. A mixed-signal approach towards linear and efficient N-way Doherty amplifiers. IEEE Trans Microw Theory Techn, 55(5):866-879.
[23]Nikandish G, Staszewski RB, Zhu AD, 2020. Breaking the bandwidth limit: a review of broadband Doherty power amplifier design for 5G. IEEE Microw Mag, 21(4):57-75.
[24]Pang JZ, He SB, Dai ZJ, et al., 2016. Design of a post-matching asymmetric Doherty power amplifier for broadband applications. IEEE Microw Wirel Compon Lett, 26(1):52-54.
[25]Pang JZ, Chu CH, Wu JY, et al., 2022. Broadband GaN MMIC Doherty power amplifier using continuous-mode combining for 5G sub-6 GHz applications. IEEE J Sol-State Circ, 57(7):2143-2154.
[26]Pang JZ, Han YJ, Peng J, et al., 2024. Dual-mode three-way Doherty power amplifier with extended high-efficiency range against load mismatch. IEEE Trans Microw Theory Techn, 72(7):4058-4067.
[27]Piacibello A, Camarchia V, Colantonio P, et al., 2023. 3-way Doherty power amplifiers: design guidelines and MMIC implementation at 28 GHz. IEEE Trans Microw Theory Techn, 71(5):2016-2028.
[28]Quaglia R, Cripps S, 2018. A load modulated balanced amplifier for telecom applications. IEEE Trans Microw Theory Techn, 66(3):1328-1338.
[29]Quaglia R, Pang JZ, Cripps SC, et al., 2022a. Load-modulated balanced amplifier: from first invention to recent development. IEEE Microw Mag, 23(12):60-70.
[30]Quaglia R, Powell JR, Chaudhry KA, et al., 2022b. Mitigation of load mismatch effects using an orthogonal load modulated balanced amplifier. IEEE Trans Microw Theory Techn, 70(6):3329-3341.
[31]Saad P, Hou R, Hellberg R, et al., 2018. A 1.8-3.8-GHz power amplifier with 40% efficiency at 8-dB power back-off. IEEE Trans Microw Theory Techn, 66(11):4870-4882.
[32]Shi WM, Li XL, Gao Y, et al., 2023. Load mismatch compensation of Doherty power amplifier using dual-input and mode reconfiguration techniques. IEEE Trans Circ Syst I Regul Pap, 70(7):2774-2787.
[33]Singh GD, Nemati HM, de Vreede LCN, 2021. A low-loss load correction technique for self-healing power amplifiers using a modified two-tap six-port network. IEEE Trans Microw Theory Techn, 69(9):4069-4081.
[34]Wang WW, Chen SC, Cai JL, et al., 2020. A dual-band outphasing power amplifier based on noncommensurate transmission line concept. IEEE Trans Microw Theory Techn, 68(7):3079-3089.
[35]Xia J, Chen WH, Meng F, et al., 2019. Improved three-stage Doherty amplifier design with impedance compensation in load combiner for broadband applications. IEEE Trans Microw Theory Techn, 67(2):778-786.
[36]Zhou H, Perez-Cisneros JR, Hesami S, et al., 2022a. A generic theory for design of efficient three-stage Doherty power amplifiers. IEEE Trans Microw Theory Techn, 70(2):1242-1253.
[37]Zhou H, Perez-Cisneros JR, Fager C, 2022b. Wideband sequential circulator load modulated amplifier with back-off efficiency enhancement. Proc 52nd European Microwave Conf, p.214-217.
[38]Zhou H, Perez-Cisneros JR, Langborn B, et al., 2023. A wideband and highly efficient circulator load modulated power amplifier architecture. IEEE Trans Circ Syst I Regul Pap, 70(8):3117-3129.
[39]Zhou XY, Chan WS, Chen SC, et al., 2020. Broadband highly efficient Doherty power amplifiers. IEEE Circ Syst Mag, 20(4):47-64.
Open peer comments: Debate/Discuss/Question/Opinion
<1>