Full Text:   <321>

Summary:  <43>

Suppl. Mater.: 

CLC number: TP18

On-line Access: 2025-11-17

Received: 2025-03-17

Revision Accepted: 2025-11-18

Crosschecked: 2025-08-17

Cited: 0

Clicked: 576

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xinmin ZHANG

https://orcid.org/0000-0002-4761-3969

Yusong ZHOU

https://orcid.org/0009-0003-4475-623X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.10 P.1984-1999

http://doi.org/10.1631/FITEE.2500169


MltAuxTSPP: a unified benchmark for deep learning-based traffic state prediction with multi-source auxiliary data


Author(s):  Yusong ZHOU, Xiaoyu JIANG, Shu SUN, Xinmin ZHANG, Yuanqiu MO, Zhihuan SONG

Affiliation(s):  College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhoushichan@zju.edu.cn, jiangxiaoyu@zju.edu.cn, shusun@zju.edu.cn, xinminzhang@zju.edu.cn

Key Words:  Traffic prediction, Benchmark platform, Deep learning, Multi-source auxiliary data


Yusong ZHOU, Xiaoyu JIANG, Shu SUN, Xinmin ZHANG, Yuanqiu MO, Zhihuan SONG. MltAuxTSPP: a unified benchmark for deep learning-based traffic state prediction with multi-source auxiliary data[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 1984-1999.

@article{title="MltAuxTSPP: a unified benchmark for deep learning-based traffic state prediction with multi-source auxiliary data",
author="Yusong ZHOU, Xiaoyu JIANG, Shu SUN, Xinmin ZHANG, Yuanqiu MO, Zhihuan SONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="1984-1999",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500169"
}

%0 Journal Article
%T MltAuxTSPP: a unified benchmark for deep learning-based traffic state prediction with multi-source auxiliary data
%A Yusong ZHOU
%A Xiaoyu JIANG
%A Shu SUN
%A Xinmin ZHANG
%A Yuanqiu MO
%A Zhihuan SONG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 1984-1999
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500169

TY - JOUR
T1 - MltAuxTSPP: a unified benchmark for deep learning-based traffic state prediction with multi-source auxiliary data
A1 - Yusong ZHOU
A1 - Xiaoyu JIANG
A1 - Shu SUN
A1 - Xinmin ZHANG
A1 - Yuanqiu MO
A1 - Zhihuan SONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 1984
EP - 1999
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500169


Abstract: 
deep learning has empowered traffic prediction models to integrate diverse auxiliary data sources, such as weather and temporal features, for enhanced forecasting accuracy. However, existing approaches often suffer from limited generality and scalability, and the field lacks a unified benchmark for fair model comparison. This absence hinders consistent performance evaluation, slows the development of robust and adaptable models, and makes it challenging to quantify the incremental benefits of different auxiliary data sources. To address these issues, we present MltAuxTSPP, a unified benchmark framework for deep learning-based traffic state prediction with multi-source auxiliary data. The framework features a standardized data container and a fusion embedding module, enabling consistent utilization of heterogeneous data and improving scalability. It produces unified hidden representations that can be seamlessly adopted by various downstream models, ensuring fair and reproducible comparisons under identical conditions. Extensive experiments on real-world datasets demonstrate that MltAuxTSPP effectively leverages weather and temporal features to improve long-term forecast performance and offers a practical and reproducible foundation for advancing research in traffic state prediction.

MltAuxTSPP:一个融合多源辅助数据的交通预测深度学习统一基准框架

周渝松1,2,江肖禹1,2,孙姝1,2,张新民1,2,莫远秋3,宋执环1,2
1浙江大学控制科学与工程学院,中国杭州市,310027
2浙江大学工业控制技术全国重点实验室,中国杭州市,310027
3东南大学数学学院,中国南京市,211189
摘要:深度学习使交通预测模型能够融合多种辅助数据源(如天气和时间信息),从而提升预测精度。现有方法往往存在通用性与可扩展性受限的问题,且该领域缺乏统一的基准测试框架来实现公平的模型比较。这种缺失阻碍了性能评估的一致性,延缓了稳健且适应性强的模型开发进程,导致量化不同辅助数据源的增量效益变得困难。为解决这些问题,我们提出MltAuxTSPP—一个融合多源辅助数据的交通预测深度学习统一基准框架。该框架具备标准化数据容器与融合嵌入模块,可实现异构数据的统一处理并提升可扩展性。其生成的统一隐含表示能被各类下游模型无缝采用,确保在相同条件下进行公平可复现的比较。基于真实数据集的广泛实验表明,MltAuxTSPP能有效利用气象与时间特征提升长期预测性能,为推进交通状态预测研究提供实用且可复现的基础框架。

关键词:交通预测;基准平台;深度学习;多源辅助数据

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akiba T, Sano S, Yanase T, et al., 2019. Optuna: a next-generation hyperparameter optimization framework. Proc 25th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining, p.2623-2631.

[2]Albanese D, Filosi M, Visintainer R, et al., 2013. Minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics, 29(3):407-408.

[3]Bączek J, Zhylko D, Titericz G, et al., 2024. TSPP: a unified benchmarking tool for time-series forecasting.

[4]Bai HY, Liu X, 2025. T-Graphormer: using Transformers for spatiotemporal forecasting.

[5]Do LNN, Taherifar N, Vu HL, 2019. Survey of neural network-based models for short-term traffic state prediction. WIREs Data Min Knowl Disc, 9(1):e1285.

[6]Essien A, Petrounias I, Sampaio P, et al., 2018. The impact of rainfall and temperature on peak and off-peak urban traffic. Int Conf on Database and Expert Systems Applications, p.399-407.

[7]Essien A, Petrounias I, Sampaio P, et al., 2021. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter. World Wide Web, 24(4):1345-1368.

[8]Fang Z, Long QQ, Song GJ, et al., 2021. Spatial-temporal graph ODE networks for traffic flow forecasting. Proc 27th ACM SIGKDD Conf on Knowledge Discovery & Data Mining, p.364-373.

[9]FHWA, 2024. How Do Weather Events Affect Roads? https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm [Accessed on May 20, 2025].

[10]Guo SN, Lin YF, Feng N, et al., 2019. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proc 39th AAAI Conf on Artificial Intelligence, p.922-929.

[11]Hochreiter S, Schmidhuber J, 1997. Long short-term memory. Neur Comput, 9(8):1735-1780.

[12]Lee K, Eo M, Jung E, et al., 2021. Short-term traffic prediction with deep neural networks: a survey. IEEE Access, 9:54739-54756.

[13]Li Y, Yu R, Shahabi C, et al., 2018. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. https://openreview.net/forum?id=SJiHXGWAZ [Accessed on May 20, 2025].

[14]Lim B, Arık SO, Loeff N, et al., 2021. Temporal fusion Transformers for interpretable multi-horizon time series forecasting. Int J Forecast, 37(4):1748-1764.

[15]Liu J, Guan W, 2004. A summary of traffic flow forecasting methods. J Highway Transport Res Dev, 21(3):82-85 (in Chinese).

[16]Liu X, Xia YT, Liang YX, et al., 2023. LargeST: a benchmark dataset for large-scale traffic forecasting. Proc 37th Int Conf on Neural Information Processing Systems, p.75354-75371.

[17]Ma XL, Yu HY, Wang YP, et al., 2015. Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS ONE, 10(3):e0119044.

[18]Meta Research, 2019. Hydra—a Framework for Elegantly Configuring Complex Applications. https://github.com/facebookresearch/hydra [Accessed on May 20, 2025].

[19]Nagy AM, Simon V, 2018. Survey on traffic prediction in smart cities. Pervasive Mob Comput, 50:148-163.

[20]Reshef DN, Reshef YA, Finucane HK, et al., 2011. Detecting novel associations in large data sets. Science, 334(6062):1518-1524.

[21]Shao ZZ, Wang F, Xu YJ, et al., 2025. Exploring progress in multivariate time series forecasting: comprehensive benchmarking and heterogeneity analysis. IEEE Trans Knowl Data Eng, 37(1):291-305.

[22]Shaygan M, Meese C, Li WX, et al., 2022. Traffic prediction using artificial intelligence: review of recent advances and emerging opportunities. Transport Res Part C Emerg Technol, 145:103921.

[23]Song C, Lin YF, Guo SN, et al., 2020. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. Proc 34th AAAI Conf on Artificial Intelligence, p.914-921.

[24]Sutskever I, Vinyals O, Le QV, 2014. Sequence to sequence learning with neural networks. Proc 27th Int Conf on Neural Information Processing Systems, p.3104-3112.

[25]Taghipour H, Parsa AB, Mohammadian AK, 2020. A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources. Transport Eng, 2:100025.

[26]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010.

[27]Wang JY, Jiang JW, Jiang WJ, et al., 2021. LibCity: an open library for traffic prediction. Proc 29th Int Conf on Advances in Geographic Information Systems, p.145-148.

[28]Wu HX, Hu TG, Liu Y, et al., 2023. TimesNet: temporal 2D-variation modeling for general time series analysis.

[29]Wu ZH, Pan SR, Long GD, et al., 2019. Graph WaveNet for deep spatial-temporal graph modeling. Proc 28th Int Joint Conf on Artificial Intelligence, p.1907-1913.

[30]Yang XX, Zou YJ, Tang JJ, et al., 2020. Evaluation of short-term freeway speed prediction based on periodic analysis using statistical models and machine learning models. J Adv Transport, 2020(1):9628957.

[31]Yu B, Yin HT, Zhu ZX, 2018. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. Proc 27th Int Joint Conf on Artificial Intelligence, p.3634-3640.

[32]Zhao L, Song YJ, Zhang C, et al., 2020. T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transport Syst, 21(9):3848-3858.

[33]Zheng X, Bagloee SA, Sarvi M, 2025. A comparative study of deep learning and ensemble learning to extend the horizon of traffic forecasting.

[34]Zhou HY, Zhang SH, Peng JQ, et al., 2021. Informer: beyond efficient Transformer for long sequence time-series forecasting. Proc 39th AAAI Conf on Artificial Intelligence, p.11106-11115.

[35]Zhu L, Yu FR, Wang YG, et al., 2019. Big data analytics in intelligent transportation systems: a survey. IEEE Trans Intell Trans Syst, 20(1):383-398.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE