Full Text:   <172>

Summary:  <34>

Suppl. Mater.: 

CLC number: U675.6;TP242

On-line Access: 2025-11-17

Received: 2025-04-12

Revision Accepted: 2025-11-18

Crosschecked: 2025-08-22

Cited: 0

Clicked: 584

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Sitian WANG

https://orcid.org/0000-0002-3628-0126

Huarong ZHENG

https://orcid.org/0000-0003-3155-6792

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.10 P.2000-2015

http://doi.org/10.1631/FITEE.2500235


Frequency of arrival-based state estimation and trajectory optimization for the navigation of autonomous marine vehicles


Author(s):  Sitian WANG, Huarong ZHENG, Jianlong LI, Wen XU

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   hrzheng@zju.edu.cn

Key Words:  Frequency of arrival, Rolling horizon estimation, Trajectory optimization, Unmanned surface vehicles, Autonomous underwater vehicles, Navigation


Sitian WANG, Huarong ZHENG, Jianlong LI, Wen XU. Frequency of arrival-based state estimation and trajectory optimization for the navigation of autonomous marine vehicles[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 2000-2015.

@article{title="Frequency of arrival-based state estimation and trajectory optimization for the navigation of autonomous marine vehicles",
author="Sitian WANG, Huarong ZHENG, Jianlong LI, Wen XU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="2000-2015",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500235"
}

%0 Journal Article
%T Frequency of arrival-based state estimation and trajectory optimization for the navigation of autonomous marine vehicles
%A Sitian WANG
%A Huarong ZHENG
%A Jianlong LI
%A Wen XU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 2000-2015
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500235

TY - JOUR
T1 - Frequency of arrival-based state estimation and trajectory optimization for the navigation of autonomous marine vehicles
A1 - Sitian WANG
A1 - Huarong ZHENG
A1 - Jianlong LI
A1 - Wen XU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 2000
EP - 2015
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500235


Abstract: 
Using the Global Positioning System (GPS) and the mobility of marine surface vehicles, this paper addresses the navigation problem between unmanned surface vehicles (USVs) and autonomous underwater vehicles (AUVs). We propose a moving AUV state estimation method based on the trajectory optimization of the USV. In particular, by exploring the Doppler effect on the frequency of arrival (FOA) of the acoustic signals received by a single-surface USV, the position and velocity of the AUV can be estimated simultaneously, offering a robust solution that eliminates the need for time synchronization. Moreover, the USV trajectory is dynamically adjusted to achieve optimal USV–AUV measurement geometry, thereby improving the AUV's observability and enhancing state estimation performance. The innovation lies in a tailored cost function grounded in observability analysis via the Cramér–Rao lower bound (CRLB) and geometric constraints. It integrates (1) the CRLB to optimize system observability, thereby enhancing estimation accuracy, (2) a distance term to ensure that the USV maintains appropriate proximity to the AUV, and (3) a turning rate term that adjusts the USV's orientation to improve following capability. The cost function is then minimized using a particle swarm optimization algorithm, balancing these components to achieve a robust AUV tracking framework. We conduct comprehensive simulations to examine the potential influences of different factors, including the complexity of the USV trajectory, AUV depth, measurement frequency, packet loss rate, and noise levels, on navigation performance. Simulation results demonstrate the effectiveness of the proposed method in estimating and tracking the AUV.

基于到达频率的自主海洋航行器状态估计与轨迹优化导航方法

王思甜1,郑华荣2,李建龙1,徐文2,3
1浙江大学信息与电子工程学院,中国杭州市,310027
2浙江大学海洋学院,中国舟山市,316021
3中国科学院深海科学与工程研究所,中国三亚市,572000
摘要:本文利用全球定位系统(GPS)与海洋水面载具的机动性,研究了无人水面航行器(USV)与自主水下航行器(AUV)间的导航问题,提出一种基于USV轨迹优化的移动AUV状态估计方法。通过分析多普勒效应对单一水面USV接收的声学信号到达频率(FOA)的影响,可同步估计AUV的位置与速度,提供了一种不需要时间同步的鲁棒解决方案。此外,通过动态调整USV轨迹来构建最优的USV-AUV测量几何构型,从而提高AUV的可观测性并提升状态估计性能。该方法的创新点是一个基于Cramér-Rao下界(CRLB)进行可观测性分析与几何约束的定制化成本函数。该函数整合了:(1)CRLB—用于优化系统可观测性,从而提高估计精度;(2)距离项—确保USV与AUV保持适当距离;(3)转向率项—用于调整USV航向以增强跟踪能力。采用粒子群优化算法对该成本函数进行最小化求解,通过多组件平衡实现稳健的AUV跟踪框架。我们通过全面仿真验证了USV轨迹复杂度、AUV下潜深度、测量频率、数据丢包率及噪声水平等不同因素对导航性能的潜在影响。仿真结果表明,所提方法在AUV状态估计与跟踪方面具有显著有效性。

关键词:到达频率;滚动视界估计;轨迹优化;无人水面航行器;自主水下航行器;导航

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Becker C, Ribas D, Ridao P, 2012. Simultaneous sonar beacon localization & AUV navigation. IFAC Proc Vol, 45(27):200-205.

[2]Cameron KJ, 2018. FDOA-Based Passive Source Localization: a Geometric Perspective. PhD Dissertation, Colorado State University, Fort Collins, USA.

[3]Chen HF, Xie L, Shen CQ, 2015. Optimal Byzantine attack strategy for distributed localisation with M-ary quantised data. Electron Lett, 51(25):2158-2160.

[4]Conti A, Mazuelas S, Bartoletti S, et al., 2019. Soft information for Localization-of-Things. Proc IEEE, 107(11):2240-2264.

[5]de Palma D, Arrichiello F, Parlangeli G, et al., 2017. Underwater localization using single beacon measurements: observability analysis for a double integrator system. Ocean Eng, 142:650-665.

[6]Fallon MF, Papadopoulos G, Leonard JJ, et al., 2010. Cooperative AUV navigation using a single maneuvering surface craft. Int J Robot Res, 29(12):1461-1474.

[7]Fossen TI, 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Chichester, UK.

[8]Gong ZJ, Li C, Su RY, 2023. Fundamental limits of Doppler shift-based, ToA-based, and TDoA-based underwater localization. IEEE/CAA J Autom Sin, 10(7):1637-1639.

[9]Guo HR, Qian ZW, Wang XJ, et al., 2023. A robust attitude estimation algorithm for seabed inverted ultra-short baseline. Ocean Eng, 280:114534.

[10]Han YF, Shi CH, Sun DJ, et al., 2018. Research on integrated navigation algorithm based on ranging information of single beacon. Appl Acoust, 131:203-209.

[11]Holthuijsen LH, 2010. Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge, USA.

[12]Jiang C, Li JL, Xu W, et al., 2021. Improvement of the position estimation for underwater gliders with a passive acoustic method. IEEE J Ocean Eng, 46(4):1165-1178.

[13]Kim J, 2023. Underwater transmitter localization based on TDOA and FDOA considering the unknown time-varying emission frequency. J Mar Sci Eng, 11(7):1260.

[14]Kinsler LE, Frey AR, Coppens AB, et al., 2000. Fundamentals of Acoustics (4th Ed.). John Wiley & Sons, Hoboken, USA.

[15]Lee PM, Jun BH, 2007. Pseudo long base line navigation algorithm for underwater vehicles with inertial sensors and two acoustic range measurements. Ocean Eng, 34(3-4):416-425.

[16]Moreno-Salinas D, Pascoal A, Aranda J, 2016. Optimal sensor placement for acoustic underwater target positioning with range-only measurements. IEEE J Ocean Eng, 41(3):620-643.

[17]Nguyen NH, Dogancay K, 2018. Closed-form algebraic solutions for 3-D Doppler-only source localization. IEEE Trans Wirel Commun, 17(10):6822-6836.

[18]Ostachowicz W, Soman R, Malinowski P, 2019. Optimization of sensor placement for structural health monitoring: a review. Struct Health Monit, 18(3):963-988.

[19]Qu JQ, Li XG, Sun GW, 2021. Optimal formation configuration analysis for cooperative localization system of multi-AUV. IEEE Access, 9:90702-90714.

[20]Ramezani H, Jamali-Rad H, Leus G, 2013. Target localization and tracking for an isogradient sound speed profile. IEEE Trans Signal Process, 61(6):1434-1446.

[21]Rypkema NR, 2019. Underwater & Out of Sight: Towards Ubiquity in Underwater Robotics. Massachusetts Institute of Technology, Cambridge, USA.

[22]Sahu N, Wu LL, Babu P, et al., 2022. Optimal sensor placement for source localization: a unified ADMM approach. IEEE Trans Veh Technol, 71(4):4359-4372.

[23]Stojanovic M, Preisig J, 2009. Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun Mag, 47(1):84-89.

[24]Tan YT, Gao R, Chitre M, 2014. Cooperative path planning for range-only localization using a single moving beacon. IEEE J Ocean Eng, 39(2):371-385.

[25]Wang ST, Zheng HR, Zhang T, et al., 2025. Frequency and time of arrival based moving target state estimation with underwater distributed sensor network. Ocean Eng, 334:121563.

[26]Webster SE, Eustice RM, Singh H, et al., 2012. Advances in single-beacon one-way-travel-time acoustic navigation for underwater vehicles. Int J Robot Res, 31(8):935-950.

[27]Win MZ, Shen Y, Wymeersch H, 2008. On the position error bound in cooperative networks: a geometric approach. Proc 10th Int Symp on Spread Spectrum Techniques and Applications, p.637-643.

[28]Xu B, Fei YL, Wang XY, et al., 2023. Optimal topology design of multi-target AUVs for 3D cooperative localization formation based on angle of arrival measurement. Ocean Eng, 271:113758.

[29]Yu Y, Zheng HR, Xu W, 2025. Learning and sampling-based informative path planning for AUVs in ocean current fields. IEEE Trans Syst Man Cybern Syst, 55(1):51-62.

[30]Zhan DZ, Wang ST, Cai SG, et al., 2023. Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA. Front Inform Technol Electron Eng, 24(1):164-175.

[31]Zhang BB, Ji DX, Liu S, et al., 2023. Autonomous underwater vehicle navigation: a review. Ocean Eng, 273:113861.

[32]Zhang DQ, Ashraf MA, Liu ZL, et al., 2020. Dynamic modeling and adaptive controlling in GPS-intelligent buoy (GIB) systems based on neural-fuzzy networks. Ad Hoc Netw, 103:102149.

[33]Zheng HR, Liu CG, 2025. An overview of unmanned surface vehicles: methods, practices, and applications. Contr Eng Pract, 164:106479.

[34]Zheng HR, Li JC, Tian ZE, et al., 2024. Hybrid physics-learning model based predictive control for trajectory tracking of unmanned surface vehicles. IEEE Trans Intell Transp Syst, 25(9):11522-11533.

[35]Zhu ZB, Hu SLJ, 2018. Model and algorithm improvement on single beacon underwater tracking. IEEE J Ocean Eng, 43(4):1143-1160.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE