[1] Albers,S., 1997. Better bounds for on-line scheduling. Proc. 29th Annual ACM Symp. on Theory of Computing, p.130-139.
[2] Bartal,Y., Fiat,A., Karloff,A., et al., 1992. New algorithm for an ancient scheduling problem. Proc. 24th Annual ACM Symp. on Theory of Computing, p.51-58.
[3] Chen,B., Vliet,A.van, Woeginger,G., 1995. New lower and upper bounds for on-line scheduling. Oper. Res. Letters, 18: 127-131.
[4] Faigle,U., Kern,W., Tur
[5] Galambos,G., Woeginger,G., 1993. An on-line scheduling heuristic with better worst-case ratio than Graham's list scheduling. SIAM J. on Computing, 22:349-355.
[6] Graham,R.L., 1966. Bounds for certain multiprocessing anomalies. Bell System Tech., 45:1563-1581.
[7] He,Y., 2000. The optimal online parallel machine scheduling. Computers & Mathematics with Applications, 39:117-121.
[8] He,Y., Zhang,G., 1999. Semi on-line scheduling on two identical machines. Computing, 62:179-187.
[9] Karger,D.R., Phillips,S.J., Torng,E., 1996. A better algorithm for an ancient scheduling algorithm. J. of Algorithms, 20:400-430.
[10] Kellerer,H., Kotov,V., Speranza,M., et al., 1997. Semi on-line algorithms for the partition problem. Oper. Res. Letters, 21:235-242.
[11] Liu,W.P., Sidney,J.B., Vliet,A.van, 1996. Ordinal algorithms for parallel machine scheduling. Oper. Res. Letters, 18:223-232.
Open peer comments: Debate/Discuss/Question/Opinion
<1>