Full Text:   <3580>

Summary:  <2340>

CLC number: Q945.78

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-07-25

Cited: 5

Clicked: 6140

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.662-670

http://doi.org/10.1631/jzus.A1400114


Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum)*


Author(s):  Di Cui1,2, Peng Zhang1, Yu-hui Ma1, Xiao He1, Yuan-yuan Li1, Yue-chun Zhao2, Zhi-yong Zhang1

Affiliation(s):  1. Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; more

Corresponding email(s):   yczhao@scau.edu.cn

Key Words:  Silver nanoparticles, Ag+ , Cucumis sativus L., Triticum aestivum L., Phytotoxicity


Di Cui, Peng Zhang, Yu-hui Ma, Xiao He, Yuan-yuan Li, Yue-chun Zhao, Zhi-yong Zhang. Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum)[J]. Journal of Zhejiang University Science A, 2014, 15(8): 662-670.

@article{title="Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum)",
author="Di Cui, Peng Zhang, Yu-hui Ma, Xiao He, Yuan-yuan Li, Yue-chun Zhao, Zhi-yong Zhang",
journal="Journal of Zhejiang University Science A",
volume="15",
number="8",
pages="662-670",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400114"
}

%0 Journal Article
%T Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum)
%A Di Cui
%A Peng Zhang
%A Yu-hui Ma
%A Xiao He
%A Yuan-yuan Li
%A Yue-chun Zhao
%A Zhi-yong Zhang
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 662-670
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400114

TY - JOUR
T1 - Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum)
A1 - Di Cui
A1 - Peng Zhang
A1 - Yu-hui Ma
A1 - Xiao He
A1 - Yuan-yuan Li
A1 - Yue-chun Zhao
A1 - Zhi-yong Zhang
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 662
EP - 670
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400114


Abstract: 
The increasing release of silver (Ag) nanoparticles (NPs) into the environment highlights the importance of exploring the interactions between Ag NPs and plants, which are the basis of most ecosystems. In this study, two plant species, Cucumis sativus L. (cucumber) and Triticum aestivum L. (wheat) were exposed to Ag NPs and ag+ (added as AgNO3) at the germination and vegetative growth stages. Above certain concentrations, Ag NPs and ag+ were toxic to the two plants. However, stimulatory effects were observed on root elongation for the cucumbers that were exposed to Ag NPs at concentrations below 200 mg/L, and ag+ at concentrations below 5 mg/L. The two plants were more susceptible to the toxicity of Ag NPs at the vegetative growth stage than the germination stage. Ag was accumulated in the roots and was subsequently translocated to the shoots after the exposure to Ag NPs. To assess the role of released ag+, we measured the dissolution of Ag NPs in exposure solutions. About 0.03% and 0.01% of Ag NPs were dissolved into a hydroponic solution at the germination stage for cucumber and wheat, respectively; while 0.17% and 0.06% at the vegetative period for cucumber and wheat, respectively. Cysteine, a strong chelating ligand of ag+, could completely eliminate the effects of Ag NPs on cucumber and wheat, suggesting that the phytotoxicity of Ag NPs was possibly caused by the release of ag+.

纳米银对黄瓜和小麦的毒性效应研究

研究目的:研究纳米银对黄瓜和小麦的毒性及在植物中的转运和分布,探讨其毒性机制,为纳米银的环境风险评估提供科学依据。
创新要点:1.选取单子叶和双子叶植物为对象,比较研究纳米银对其萌发阶段和生长阶段的毒性效应及其影响因素;2.多数研究中的纳米银均有表面修饰,本研究选择无表面修饰的纳米银材料,排除表面活性剂的干扰因素;3.以络合剂半胱氨酸掩蔽解离出的银离子,探讨纳米银颗粒对植物毒性的贡献。
研究方法:通过植物根长(图2)和生物量(图3)分别评价萌发和生长阶段纳米银的植物毒性。利用电感耦合等离子体质谱(ICP-MS)测定植物组织银元素的含量(图7)。通过组织切片,利用透射电镜(TEM)观察植物根中银的微观分布(图6)。通过在暴露介质中添加半胱氨酸掩蔽银离子来评价纳米银颗粒对植物毒性的贡献(图3和5)。
重要结论:在较高暴露浓度情况下,纳米银和银离子对小麦和黄瓜都具有明显的毒性。但当纳米银浓度低于200mg/L,银离子浓度低于5mg/L时,两者均能促进黄瓜根系的生长。两种植物在营养生长阶段比萌发阶段对纳米银的毒性更敏感。纳米银暴露后,银首先积聚于植物的根,然后被转移到地上部。为评价纳米银释放的银离子的作用,我们测定了暴露后介质中银离子的浓度。在种子萌发阶段,黄瓜和小麦的暴露液中约0.03%和0.01%的纳米银溶解,而在营养生长阶段,溶解的纳米银达到0.17%和0.06%。半胱氨酸作为银离子的强络合剂,能够彻底消除纳米银对黄瓜和小麦的作用,说明纳米银的植物效应可能来自于其释放的银离子。
纳米银;银离子;黄瓜;小麦;植物毒性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] AshaRani, P.V., Low Kah Mun, G., Hande, M.P., 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2):279-290. 


[2] Benn, T.M., Westerhoff, P., 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology, 42(11):4133-4139. 


[3] Binder, B.M., Rodriguez, F.I., Bleecker, A.B., 2007. The effects of Group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thalianaFEBS Letters, 581(26):5105-5109. 


[4] Blaser, S.A., Scheringer, M., MacLeod, M., 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Science of The Total Environment, 390(2-3):396-409. 


[5] Bozzola, J.J., Russell, L.D., 1999. Electron Microscopy: Principles and Techniques for Biologists, Jones & Bartlett Learning,:

[6] Cañas, J.E., Long, M., Nations, S., 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27(9):1922-1931. 


[7] Choi, O., Hu, Z., 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42(12):4583-4588. 


[8] Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., 2003. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 19(4):1357-1361. 


[9] Geisler-Lee, J., Wang, Q., Yao, Y., 2013. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thalianaNanotoxicology, 7(3):323-337. 


[10] Griffitt, R.J., Luo, J., Gao, J., 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 27(9):1972-1978. 


[11] Gubbins, E.J., Batty, L.C., Lead, J.R., 2011. Phytotoxicity of silver nanoparticles to Lemna minor L. Environmental Pollution, 159(6):1551-1559. 


[12] He, D., Dorantes-Aranda, J.J., Waite, T.D., 2012. Silver nanoparticle algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environmental Science and Technology, 46(16):8731-8738. 


[13] Hussain, S., Hess, K., Gearhart, J., 2005.  In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 19(7):975-983. 


[14] Jiang, W., Kim, B.Y., Rutka, J.T., 2008. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 3(3):145-150. 


[15] Kim, S., Choi, J.E., Choi, J., 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro, 23(6):1076-1084. 


[16] Limbach, L.K., Wick, P., Manser, P., 2007. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environmental Science and Technology, 41(11):4158-4163. 


[17] Lin, D.H., Xing, B.S., 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2):243-250. 


[18] Lin, D.H., Xing, B.S., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science and Technology, 42(15):5580-5585. 


[19] Ma, Y.H., He, X., Zhang, P., 2011. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology, 5(4):743-753. 


[20] Miao, A.J., Schwehr, K.A., Xu, C., 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution, 157(11):3034-3041. 


[21] Miao, A.J., Luo, Z., Chen, C.S., 2010. Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danicaPLoS ONE, 5(12):e15196


[22] Morones, J.R., Elechiguerra, J.L., Camacho, A., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10):2346


[23] Navarro, E., Piccapietra, F., Wagner, B., 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtiiEnvironmental Science and Technology, 42(23):8959-8964. 


[24] Pal, S., Tak, Y.K., Song, J.M., 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coliApplied and Environmental Microbiology, 73(6):1712-1720. 


[25] Ratte, H.T., 1999. Bioaccumulation and toxicity of silver compounds: a review. Environmental Toxicology and Chemistry, 18(1):89-108. 


[26] Strader, L.C., Beisner, E.R., Bartel, B., 2009. Silver ions increase auxin efflux independently of effects on ethylene response. The Plant Cell, 21(11):3585-3590. 


[27] Wang, J., Koo, Y., Alexander, A., 2013. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science and Technology, 47(10):5442-5449. 


[28] Yin, L., Cheng, Y., Espinasse, B., 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorumEnvironmental Science and Technology, 45(6):2360-2367. 


[29] Zhang, P., Ma, Y.H., Zhang, Z.Y., 2012. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environmental Science and Technology, 46(3):1834-1841. 


[30] Zhao, X.C., Qu, X., Mathews, D.E., 2002. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from ArabidopsisPlant Physiology, 130(4):1983-1991. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE