Full Text:   <3421>

Summary:  <2193>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-02-01

Cited: 0

Clicked: 14554

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shengwen TANG

https://orcid.org/0000-0002-4883-3103

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.2 P.97-115

http://doi.org/10.1631/jzus.A2300476


Stress relaxation properties of calcium silicate hydrate: a molecular dynamics study


Author(s):  Zhicheng GENG, Shengwen TANG, Yang WANG, Hubao A, Zhen HE, Kai WU, Lei WANG

Affiliation(s):  State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; more

Corresponding email(s):   tangsw@whu.edu.cn

Key Words:  Calcium silicate hydrate (C-S-H), Stress relaxation, Ca/Si ratio, Temperature, Water content, Atomic simulation


Share this article to: More |Next Article >>>


Abstract: 
The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level. calcium silicate hydrate (C-S-H), the main hydration product of Portland cement, is responsible for the viscoelastic mechanism of cement-based materials. In this study, a molecular model of C-S-H was developed to explain the stress relaxation characteristics of C-S-H at different initial deformation states, ca/Si ratios, temperatures, and water contents, which cannot be accessed experimentally. The stress relaxation of C-S-H occurs regardless of whether it is subjected to initial shear, tensile, or compressive deformation, and shows a heterogeneous characteristic. Water plays a crucial role in the stress relaxation process. A large ca/Si ratio and high temperature reduce the cohesion between the calcium-silicate layer and the interlayer region, and the viscosity of the interlayer region, thereby accelerating the stress relaxation of C-S-H. The effect of the hydrogen bond network and the morphology of C-S-H on the evolution of the stress relaxation characteristics of C-S-H at different water contents was elucidated by nonaffine mean squared displacement. Our results shed light on the stress relaxation characteristics of C-S-H from a microscopic perspective, bridging the gap between the microscopic phenomena and the underlying atomic-level mechanisms.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE