Full Text:   <1276>

Summary:  <33>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-07-29

Received: 2024-06-02

Revision Accepted: 2024-08-27

Crosschecked: 2025-07-29

Cited: 0

Clicked: 1261

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Guo-dong Yi

https://orcid.org/0000-0002-7711-7982

Xiaojian LIU

https://orcid.org/0000-0001-8147-9954

Yang WANG

https://orcid.org/0000-0002-3576-1817

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.7 P.635-651

http://doi.org/10.1631/jzus.A2400287


Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation


Author(s):  Xiaojian LIU, Ao JIAO, Yang WANG, Guodong YI, Xiangyu GAO, Xiaochen ZHANG, Yiming ZHANG, Yangjian JI, Shuyou ZHANG, Jianrong TAN

Affiliation(s):  Ningbo Global Innovation Center, Zhejiang University, Ningbo 315100, China; more

Corresponding email(s):   onward@zju.edu.cn, ygd@zju.edu.cn

Key Words:  Five-axis machine tool, Accuracy allocation, Geometric error modeling, Error cost sensitivity, Tool direction deviation priority


Xiaojian LIU, Ao JIAO, Yang WANG, Guodong YI, Xiangyu GAO, Xiaochen ZHANG, Yiming ZHANG, Yangjian JI, Shuyou ZHANG, Jianrong TAN. Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation[J]. Journal of Zhejiang University Science A, 2025, 26(7): 635-651.

@article{title="Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation",
author="Xiaojian LIU, Ao JIAO, Yang WANG, Guodong YI, Xiangyu GAO, Xiaochen ZHANG, Yiming ZHANG, Yangjian JI, Shuyou ZHANG, Jianrong TAN",
journal="Journal of Zhejiang University Science A",
volume="26",
number="7",
pages="635-651",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400287"
}

%0 Journal Article
%T Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation
%A Xiaojian LIU
%A Ao JIAO
%A Yang WANG
%A Guodong YI
%A Xiangyu GAO
%A Xiaochen ZHANG
%A Yiming ZHANG
%A Yangjian JI
%A Shuyou ZHANG
%A Jianrong TAN
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 7
%P 635-651
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400287

TY - JOUR
T1 - Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation
A1 - Xiaojian LIU
A1 - Ao JIAO
A1 - Yang WANG
A1 - Guodong YI
A1 - Xiangyu GAO
A1 - Xiaochen ZHANG
A1 - Yiming ZHANG
A1 - Yangjian JI
A1 - Shuyou ZHANG
A1 - Jianrong TAN
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 7
SP - 635
EP - 651
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400287


Abstract: 
accuracy allocation is crucial in the accuracy design of machining tools. Current accuracy allocation methods primarily focus on positional deviation, with little consideration for tool direction deviation. To address this issue, we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools. A geometric error model consisting of 41 error components is constructed based on homogeneous transformation matrices. Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool. The sensitivity of each error component at these sampling points is analyzed using the Sobol method. To balance the needs of geometric precision and manufacturing cost, a geometric error cost sensitivity function is developed to estimate the required cost. By allocating error components affecting tool direction deviation first and the remaining components second, this allocation scheme ensures that both deviations meet the requirements. We also perform numerical simulation of a BC-type (B-axis and C-axis type) five-axis machine tool to validate the method. The results show that the new allocation scheme reduces the total geometric error cost by 27.8% compared to a uniform allocation scheme, and yields the same positional and tool direction machining accuracies.

基于几何误差成本灵敏度和姿态偏差先行的五轴机床精度分配方法

作者:刘晓健1,2,3,4,焦傲3,4,王阳1,3,4,伊国栋2,3,4,高翔宇3,张筱晨5,张益鸣2,3,纪杨建2,3,张树有1,2,3,4,谭建荣1,2,3,4
机构:1浙江大学,宁波国际科创中心,中国宁波,315100;2浙江大学,流体动力基础件与机电系统全国重点实验室,中国杭州,310058;3浙江大学,机械工程学院,中国杭州,310058;4浙江省高档数控机床技术创新中心,中国台州,317500;5伦敦大学学院,机械工程系,英国伦敦
目的:现有五轴机床精度分配方法主要考虑位置偏差,而较少考虑刀具姿态偏差。本文旨在研究一种将刀具姿态纳入考虑的五轴机床精度分配新方法,同时兼顾成本和总体精度,从而得到以合理成本实现目标位置和姿态精度的分配方案,为机床精度正向设计提供量化参考。
创新点:1.提出优先考虑刀具姿态偏差的五轴机床精度分配方法;2.定义几何误差成本灵敏度以实现成本优化的精度分配。
方法:1.基于齐次变换矩阵构建由41个误差分量组成的五轴机床几何误差模型(公式(S1)~(S3));2.定义几何误差成本灵敏度(公式(5)),并在五轴机床直线轴和旋转轴总体体积空间中分析灵敏度;3.提出优先考虑姿态偏差的两步精度分配方法(图4);4.将该方法应用于一台B轴-C轴双转台五轴机床的精度设计分配,并通过斜圆锥面特征工件的仿真计算验证所提方法的可行性和有效性(图10和11)。
结论:1.结合位置、姿态误差的成本和灵敏度分析,定义了兼顾成本和总体精度的几何误差成本灵敏度指标,并得出了机床精度检验准则和实现目标精度的算法;2.提出了先分配影响刀具姿态的误差分量、后分配其余分量的两步精度分配方法;3.通过对一台B轴-C轴双转台五轴机床的几何精度进行优化设计,使几何误差成本相比均匀分配方案降低了27.8%,从而验证了所提方法的可行性和有效性。

关键词:五轴机床;精度分配;几何误差建模;误差成本灵敏度;刀具姿态偏差优先

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ArmillottaA, 2020. Selection of parameters in cost-tolerance functions: review and approach. The International Journal of Advanced Manufacturing Technology, 108(1-2):167-182.

[2]ChanK, SaltelliA, TarantolaS, 1997. Sensitivity analysis of model output: variance-based methods make the difference. Proceedings of the Winter Simulation Conference, p.261-268.

[3]ChenGD, LiangYC, SunYZ, et al., 2013. Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. The International Journal of Advanced Manufacturing Technology, 68(9-12):2525-2534.

[4]ChenQD, HuXL, LinM, et al., 2023. Research review of error compensation technology for ultra-precision machining. China Mechanical Engineering, 34(3):253-268 (in Chinese).

[5]ChengQ, ZhaoHW, ZhangGJ, et al., 2014. An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis. The International Journal of Advanced Manufacturing Technology, 75(1-4):107-121.

[6]ChengQ, DongLF, LiuZF, et al., 2018. A new geometric error budget method of multi-axis machine tool based on improved value analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22):4064-4083.

[7]Díaz-SaldañaG, Osornio-RíosRA, Zamudio-RamírezI, et al., 2023. Methodology for tool wear detection in CNC machines based on fusion flux current of motor and image workpieces. Machines, 11(4):480.

[8]DingS, ChenZW, ZhangH, et al., 2023. Gear evaluation deviations-based crucial geometric error identification of five-axis CNC gear form grinding process. Journal of Manufacturing Processes, 99:663-675.

[9]FanJW, TaoHH, PanR, et al., 2020. An approach for accuracy enhancement of five-axis machine tools based on quantitative interval sensitivity analysis. Mechanism and Machine Theory, 148:103806.

[10]FanYC, FanKC, HuangYB, 2024. Modeling and compensation of enhanced volumetric error of machine tools containing crosstalk errors. Precision Engineering, 86:252-264.

[11]ISO (International Organization for Standardization), 2012a. Test Code for Machine Tools–Part 1: Geometric Accuracy of Machines Operating under No-Load or Quasi-Static Conditions, ISO 230-1:2012. ISO, Geneva, Switzerland.

[12]ISO (International Organization for Standardization), 2012b. Test Code for Machine Tools–Part 7: Geometric Accuracy of Axes of Rotation, ISO 230-7:2012. ISO, Geneva, Switzerland.

[13]JiangXG, CrippsRJ, 2015. A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar. International Journal of Machine Tools and Manufacture, 89:151-158.

[14]LiZH, FengWL, YangJG, et al., 2018. An investigation on modeling and compensation of synthetic geometric errors on large machine tools based on moving least squares method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(3):412-427.

[15]LinMQ, YuanPJ, TanHJ, et al., 2015. Improvements of robot positioning accuracy and drilling perpendicularity for autonomous drilling robot system. IEEE International Conference on Robotics and Biomimetics, p.1483-1488.

[16]LiuJ, TuLW, LiuGZ, et al., 2019. An analytical structural global sensitivity analysis method based on direct integral. Inverse Problems in Science and Engineering, 27(11):1559-1576.

[17]NiuP, ChengQ, LiuZF, et al., 2021. A machining accuracy improvement approach for a horizontal machining center based on analysis of geometric error characteristics. The International Journal of Advanced Manufacturing Technology, 112(9-10):2873-2887.

[18]NiuP, ChengQ, LiuZF, et al., 2025. Multi-objective optimal tolerance allocation design of machine tool based on NSGA-II algorithm and thermal characteristic analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2025:09544054241310330.

[19]SaltelliA, AleksankinaK, BeckerW, et al., 2019. Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environmental Modelling & Software, 114:29-39.

[20]SobolIM, 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3):271-280.

[21]SongLQ, SunT, JiaRY, et al., 2024. An error allocation method for five-axis ultra-precision machine tools. The International Journal of Advanced Manufacturing Technology, 130(5-6):2601-2616.

[22]TianWJ, 2014. Investigation into Accuracy Design and Error Compensation of High-Precision Horizontal Machining Centers. PhD Thesis, Tianjin University, Tianjin, China(in Chinese).

[23]WangYH, MinYX, YuGY, et al., 2023. Parameters coordinated optimization of subsynchronous oscillation of doubly fed induction generator system based on impedance sensitivity analysis with Sobol method. High Voltage Engineering, 49(4):1703-1713 (in Chinese).

[24]WeiXY, YeHH, WangG, et al., 2024. Adaptive thermal error prediction for CNC machine tool spindle using online measurement and an improved recursive least square algorithm. Case Studies in Thermal Engineering, 56:104239.

[25]WuHR, ZhengHL, LiXX, et al., 2020a. A geometric accuracy analysis and tolerance robust design approach for a vertical machining center based on the reliability theory. Measurement, 161:107809.

[26]WuHR, ZhengHL, LiXX, et al., 2020b. Robust design method for optimizing the static accuracy of a vertical machining center. The International Journal of Advanced Manufacturing Technology, 109(7-8):2009-2022.

[27]XiaCJ, WangSL, SunSL, et al., 2019. An identification method for crucial geometric errors of gear form grinding machine tools based on tooth surface posture error model. Mechanism and Machine Theory, 138:76-94.

[28]XiaCJ, WangSL, MaC, et al., 2020. Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model. International Journal of Mechanical Sciences, 169:105319.

[29]XiangST, WuCY, 2021. Application of sensitivity analysis in precision optimization of CNC machine tools: a state-of-the-art review. Aeronautical Manufacturing Technology, 64(22):40-47 (in Chinese).

[30]XingKL, AchicheS, MayerJRR, 2019. Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures. International Journal of Machine Tools and Manufacture, 138:80-93.

[31]XiongG, DingY, ZhuLM, 2019. Stiffness-based pose optimization of an industrial robot for five-axis milling. Robotics and Computer-Integrated Manufacturing, 55:19-28.

[32]YuJB, ChengX, LuL, et al., 2021. A machine vision method for measurement of machining tool wear. Measurement, 182:109683.

[33]YuanPJ, WangQS, ShiZY, et al., 2014. A micro-adjusting attitude mechanism for autonomous drilling robot end-effector. Science China Information Sciences, 57(12):1-12.

[34]ZhangHN, XiangST, WuC, et al., 2024. Optimal proportion compensation method of key geometric errors for five-axis machine tools considering multiple-direction coupling effects. Journal of Manufacturing Processes, 110:447-461.

[35]ZhangK, ZhangLQ, YanYC, 2016. Single spherical angle linear interpolation for the control of non-linearity errors in five-axis flank milling. The International Journal of Advanced Manufacturing Technology, 87(9-12):3289-3299.

[36]ZhangZ, JiangF, LuoM, et al., 2024. Geometric error measuring, modeling, and compensation for CNC machine tools: a review. Chinese Journal of Aeronautics, 37(2):163-198.

[37]ZhangZL, LiuZF, ChengQ, et al., 2017. An approach of comprehensive error modeling and accuracy allocation for the improvement of reliability and optimization of cost of a multi-axis NC machine tool. The International Journal of Advanced Manufacturing Technology, 89(1-4):561-579.

[38]ZhongXM, LiuHQ, MaoXY, et al., 2019. Influence and error transfer in assembly process of geometric errors of a translational axis on volumetric error in machine tools. Measurement, 140:450-461.

[39]ZhuMR, YangY, FengXB, et al., 2023. Robust modeling method for thermal error of CNC machine tools based on random forest algorithm. Journal of Intelligent Manufacturing, 34(4):2013-2026.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE