Full Text:   <1178>

Summary:  <30>

CLC number: 

On-line Access: 2025-07-29

Received: 2024-09-02

Revision Accepted: 2024-12-08

Crosschecked: 2025-07-29

Cited: 0

Clicked: 530

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Alejandro BOLAÑOS

https://orcid.org/0009-0002-3426-7419

Alejandro YÁNEZ

https://orcid.org/0000-0002-1736-552X

Alberto CUADRADO

https://orcid.org/0000-0002-8599-781X

María Paula FIORUCCI

https://orcid.org/0000-0002-4532-7520

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.7 P.679-693

http://doi.org/10.1631/jzus.A2400431


Computational analysis of Ti-6Al-4V thoracic implants with a spring-like geometry for anterior chest wall reconstruction


Author(s):  Alejandro BOLANOS, Alejandro YANEZ, Alberto CUADRADO, Maria Paula FIORUCCI, Belinda MENTADO

Affiliation(s):  Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain; more

Corresponding email(s):   alejandro.yanez@ulpgc.es

Key Words:  Chest wall reconstruction, Thoracic implant, Spring-like geometry, Semi-ring-rib model, Computational analysis


Alejandro BOLANOS, Alejandro YANEZ, Alberto CUADRADO, Maria Paula FIORUCCI, Belinda MENTADO. Computational analysis of Ti-6Al-4V thoracic implants with a spring-like geometry for anterior chest wall reconstruction[J]. Journal of Zhejiang University Science A, 2025, 26(7): 679-693.

@article{title="Computational analysis of Ti-6Al-4V thoracic implants with a spring-like geometry for anterior chest wall reconstruction",
author="Alejandro BOLANOS, Alejandro YANEZ, Alberto CUADRADO, Maria Paula FIORUCCI, Belinda MENTADO",
journal="Journal of Zhejiang University Science A",
volume="26",
number="7",
pages="679-693",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400431"
}

%0 Journal Article
%T Computational analysis of Ti-6Al-4V thoracic implants with a spring-like geometry for anterior chest wall reconstruction
%A Alejandro BOLANOS
%A Alejandro YANEZ
%A Alberto CUADRADO
%A Maria Paula FIORUCCI
%A Belinda MENTADO
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 7
%P 679-693
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400431

TY - JOUR
T1 - Computational analysis of Ti-6Al-4V thoracic implants with a spring-like geometry for anterior chest wall reconstruction
A1 - Alejandro BOLANOS
A1 - Alejandro YANEZ
A1 - Alberto CUADRADO
A1 - Maria Paula FIORUCCI
A1 - Belinda MENTADO
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 7
SP - 679
EP - 693
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400431


Abstract: 
Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs. In recent years, advancements in additive manufacturing have enabled the production of thoracic implants with complex geometries, offering more versatile performance. In this study, we investigated a design based on a spring-like geometry manufactured by laser powder bed fusion (LPBF), as proposed in earlier research. The biomechanical behavior of this design was analyzed using various isolated semi-ring-rib models at different levels of the rib cage. This approach enabled a comprehensive examination, leading to the proposal of several implant configurations that were incorporated into a 3D rib cage model with chest wall defects, to simulate different chest wall reconstruction scenarios. The results revealed that the implant design was too rigid for the second rib level, which therefore was excluded from the proposed implant configurations. In chest wall reconstruction simulations, the maximum stresses observed in all prostheses did not exceed 38% of the implant material’s yield stress in the most unfavorable case. Additionally, all the implants showed flexibility compatible with the physiological movements of the human thorax.

Ti-6Al-4V胸壁植入物的计算分析:采用类弹簧结构实现前胸壁重建

作者:Alejandro BOLANOS1, Alejandro YANEZ1, Alberto CUADRADO1, Maria Paula FIORUCCI1, Belinda MENTADO2,3
机构:1拉斯帕尔马斯大学,机械工程系,西班牙拉斯帕尔马斯,35017;2加那利群岛技术研究所(ITC),生物医学工程系,西班牙阿里纳加,35118;3Osteobionix公司,西班牙圣卢西亚-德蒂拉哈纳,35118
目的:开发并评估用于胸壁重建的柔性胸壁植入物,重点提升相较于传统刚性植入物的机械性能与灵活性,旨在降低植入失败率并改善患者舒适度及活动能力。
创新点:1.引入类弹簧几何结构仿生肋软骨力学行为,显著增强了胸廓柔性;2.该设计结合先进制造技术实现复杂定制化植入,突破了传统刚性假体在胸壁重建中的局限性。
方法:1.建立包含骨骼与软骨的胸廓模型(简化排除肌肉组织),并模拟不同载荷条件下的胸壁重建场景,评估应力分布与灵活性;2.通过疲劳测试进一步验证植入物的长期耐久性。
结论:1.第三至第五肋间植入物展现出优异的机械性能与灵活性;2.第二肋出现过度刚度现象,需要针对性改进设计;3.该设计方案在维持应力均匀分布的同时可承受机械载荷,有望成为刚性植入物的可靠替代方案。

关键词:胸壁重建;胸壁植入物;类弹簧结构;半环肋模型;计算分析

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AgnewAM, KangYS, MoorhouseK, et al., 2013. Age-related changes in stiffness in human ribs. Proceedings of the IRCOBI Conference, p.257-269.

[2]AgnewAM, SchafmanM, MoorhouseK, et al., 2015. The effect of age on the structural properties of human ribs. Journal of the Mechanical Behavior of Biomedical Materials, 41:302-314.

[3]AragónJ, MéndezIP, 2016. Dynamic 3D printed titanium copy prosthesis: a novel design for large chest wall resection and reconstruction. Journal of Thoracic Disease, 8(6):E385-E389.

[4]ArandaJL, NovoaN, JiménezMF, 2019. Thoracic customized modular titanium-printed prosthesis. AME Case Reports, 3:35.

[5]BerthetJP, Gomez CaroA, SoloveiL, et al., 2015. Titanium implant failure after chest wall osteosynthesis. The Annals of Thoracic Surgery, 99(6):1945-1952.

[6]BeyerB, SholukhaV, DugaillyPM, et al., 2014. In vivo thorax 3D modelling from costovertebral joint complex kinematics. Clinical Biomechanics, 29(4):434-438.

[7]BeyerB, FeipelV, SholukhaV, et al., 2017. In-vivo analysis of sternal angle, sternal and sternocostal kinematics in supine humans during breathing. Journal of Biomechanics, 64:32-40.

[8]CanoJR, EscobarFH, AlonsoDP, et al., 2018. Reconstruction of the anterior chest wall with a 3-dimensionally printed biodynamic prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 155(1):E59-E60.

[9]de GrooteA, WantierM, CheronG, et al., 1997. Chest wall motion during tidal breathing. Journal of Applied Physiology, 83(5):1531-1537.

[10]FiorucciMP, CuadradoA, YánezA, et al., 2021. Biomechanical characterization of custom-made dynamic implants fabricated by electron beam melting for anterior chest wall reconstruction. Materials & Design, 206:109758.

[11]FormanJL, de DiosEDP, KentRW, 2010. A pseudo-elastic effective material property representation of the costal cartilage for use in finite element models of the whole human body. Traffic Injury Prevention, 11(6):613-622.

[12]GarcíaJRC, ShaoML, MonopoliD, 2024. Giant reconstruction of right hemithorax with 3D custom dynamic prosthesis. Archivos de Bronconeumología, 60(3):177-178.

[13]GirottiA, RosaF, FerrottoM, et al., 2017. Mechanical behavior of a total chest wall prosthesis with rib-like features. Computer Methods in Biomechanics and Biomedical Engineering, 20(15):1581-1588.

[14]GradischarA, LebschyC, KrachW, et al., 2022. Measurement of global mechanical properties of human thorax: costal cartilage. Journal of Biomechanics, 142:111242.

[15]GrubenKG, HalperinHR, PopelAS, et al., 1999. Canine sternal force-displacement relationship during cardiopulmonary resuscitation. IEEE Transactions on Biomedical Engineering, 46(7):788-796.

[16]HazelK, WeyantMJ, 2015. Chest wall resection and reconstruction: management of complications. Thoracic Surgery Clinics, 25(4):517-521.

[17]IraeusJ, BrolinK, PipkornB, 2020. Generic finite element models of human ribs, developed and validated for stiffness and strain prediction‍–‍to be used in rib fracture risk evaluation for the human population in vehicle crashes. Journal of the Mechanical Behavior of Biomedical Materials, 106:103742.

[18]KangJF, WangL, YangCC, et al., 2018. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomechanics and Modeling in Mechanobiology, 17(4):1083-1092.

[19]KangJF, TianYC, ZhengJB, et al., 2022. Functional design and biomechanical evaluation of 3D printing PEEK flexible implant for chest wall reconstruction. Computer Methods and Programs in Biomedicine, 225:107105.

[20]KaraHV, KeenanJE, BaldersonSS, et al., 2018. Video assisted thoracic surgery with chest wall resection. Video-Assisted Thoracic Surgery, 3(4):15.

[21]KemperAR, McNallyC, PullinsCA, et al., 2007. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests. Proceedings of the 51st Stapp Car Crash Conference, p.235-273.

[22]KermavnarT, ShannonA, O’SullivanKJ, et al., 2021. Three-dimensional printing of medical devices used directly to treat patients: a systematic review. 3D Printing and Additive Manufacturing, 8(6):366-408.

[23]LiZ, SubitD, KindigMW, et al., 2022. Development of a finite element ribcage model of the 50th percentile male with variable rib cortical thickness. Proceedings of the 38th International Workshop of Injury Biomechanics Research.

[24]LiZP, KindigMW, KerriganJR, et al., 2010. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study. Journal of Biomechanics, 43(2):228-234.

[25]LuuBL, McDonaldRJ, BolsterleeB, et al., 2021. Movement of the ribs in supine humans for small and large changes in lung volume. Journal of Applied Physiology, 131(1):174-183.

[26]MohrM, AbramsE, EngelC, et al., 2007. Geometry of human ribs pertinent to orthopedic chest-wall reconstruction. Journal of Biomechanics, 40(6):1310-1317.

[27]MoradiellosJ, AmorS, CórdobaM, et al., 2017. Functional chest wall reconstruction with a biomechanical three-dimensionally printed implant. The Annals of Thoracic Surgery, 103(4):E389-E391.

[28]MurachMM, KangYS, BolteJH, et al., 2018. Quantification of skeletal and soft tissue contributions to thoracic response in a dynamic frontal loading scenario. Stapp Car Crash Journal, 62:193-269.

[29]PalancaM, LiebschC, HübnerS, et al., 2022. Global and local characterization explains the different mechanisms of failure of the human ribs. Journal of the Mechanical Behavior of Biomedical Materials, 125:104931.

[30]RafiHK, KarthikNV, GongHJ, et al., 2013. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. Journal of Materials Engineering and Performance, 22(12):3872-3883.

[31]SannaS, BrandoliniJ, PardolesiA, et al., 2017. Materials and techniques in chest wall reconstruction: a review. Journal of Visualized Surgery, 3(7):95.

[32]SederCW, RoccoG, 2016. Chest wall reconstruction after extended resection. Journal of Thoracic Disease, 8(S11):S863-S871.

[33]ShawG, LessleyD, EvansJ, et al., 2007. Quasi-static and dynamic thoracic loading tests: cadaveric torsos. Proceedings of the International IRCOBI Conference on the Biomechanics of Impact, p.325-348.

[34]SunCN, DongEC, TianYC, et al., 2024. Functional biomimetic design of 3D printed polyether-ether-ketone flexible chest wall reconstruction implants for restoration of the respiration. Materials & Design, 237:112574.

[35]TomlinsonAE, NysaetherJ, Kramer-JohansenJ, et al., 2007. Compression force‍–‍depth relationship during out-of-hospital cardiopulmonary resuscitation. Resuscitation, 72(3):364-370.

[36]TriviñoA, López-CanoR, MachucaJ, 2023. Chondrosarcoma of manubrium: innovative chest wall reconstruction. Archivos de Bronconeumología, 59(4):251-252.

[37]VannucciJ, ScarnecchiaE, PotenzaR, et al., 2020. Dynamic titanium prosthesis based on 3D-printed replica for chest wall resection and reconstruction. Translational Lung Cancer Research, 9(5):2027-2032.

[38]WangL, CaoTS, LiXF, et al., 2016. Three-dimensional printing titanium ribs for complex reconstruction after extensive posterolateral chest wall resection in lung cancer. The Journal of Thoracic and Cardiovascular Surgery, 152(1):E5-E7.

[39]WenXP, GaoS, FengJT, et al., 2018. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping. Journal of Cardiothoracic Surgery, 13(1):4.

[40]WeyantMJ, BainsMS, VenkatramanE, et al., 2006. Results of chest wall resection and reconstruction with and without rigid prosthesis. The Annals of Thoracic Surgery, 81(1):279-285.

[41]WilsonTA, LegrandA, GevenoisPA, et al., 2001. Respiratory effects of the external and internal intercostal muscles in humans. The Journal of Physiology, 530(2):319-330.

[42]YadroitsevI, KrakhmalevP, YadroitsavaI, et al., 2018. Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications. JOM, 70(3):372-377.

[43]YánezA, FiorucciMP, CuadradoA, et al., 2020. Surface roughness effects on the fatigue behaviour of gyroid cellular structures obtained by additive manufacturing. International Journal of Fatigue, 138:105702.

[44]YánezA, FiorucciMP, MartelO, et al., 2022. The influence of dimensions and powder recycling on the roughness and mechanical properties of Ti-6Al-4V parts fabricated by laser powder bed fusion. Materials, 15(16):5787.

[45]ZhangCG, WangL, KangJF, et al., 2020. Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. Journal of the Mechanical Behavior of Biomedical Materials, 103:103561.

[46]ZhangGZ, ChenX, OhgiJ, et al., 2016. Biomechanical simulation of thorax deformation using finite element approach. BioMedical Engineering Online, 15(1):18.

[47]ZhangGZ, ChenX, OhgiJ, et al., 2018. Effect of intercostal muscle contraction on rib motion in humans studied by finite element analysis. Journal of Applied Physiology, 125(4):1165-1170.

[48]ZhaoXL, GuoSJ, XiaoS, et al., 2022. Thorax dynamic modeling and biomechanical analysis of chest breathing in supine lying position. Journal of Biomechanical Engineering, 144(10):101004.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE