Full Text:   <1186>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-11-24

Received: 2024-11-27

Revision Accepted: 2024-12-24

Crosschecked: 2025-11-25

Cited: 0

Clicked: 1151

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ping Tan

https://orcid.org/0000-0001-8656-3514

Huoping YI

https://orcid.org/0009-0007-4615-6528

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.11 P.1127-1140

http://doi.org/10.1631/jzus.A2400540


A dual-focal-plane augmented reality head-up display optical system adapted for heavy-haul locomotives


Author(s):  Huoping YI, Fuhao CHANG, Yan CHEN, Ping TAN, Zhen XU, Yongbo WU, Jin DING, Jien MA

Affiliation(s):  College of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; more

Corresponding email(s):   115011@zust.edu.cn, majien@zju.edu.cn

Key Words:  Optical system, Off-axis reflective structure, Freeform surface, User interface (UI) simulation


Share this article to: More <<< Previous Article|

Huoping YI, Fuhao CHANG, Yan CHEN, Ping TAN, Zhen XU, Yongbo WU, Jin DING, Jien MA. A dual-focal-plane augmented reality head-up display optical system adapted for heavy-haul locomotives[J]. Journal of Zhejiang University Science A, 2025, 26(11): 1127-1140.

@article{title="A dual-focal-plane augmented reality head-up display optical system adapted for heavy-haul locomotives",
author="Huoping YI, Fuhao CHANG, Yan CHEN, Ping TAN, Zhen XU, Yongbo WU, Jin DING, Jien MA",
journal="Journal of Zhejiang University Science A",
volume="26",
number="11",
pages="1127-1140",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400540"
}

%0 Journal Article
%T A dual-focal-plane augmented reality head-up display optical system adapted for heavy-haul locomotives
%A Huoping YI
%A Fuhao CHANG
%A Yan CHEN
%A Ping TAN
%A Zhen XU
%A Yongbo WU
%A Jin DING
%A Jien MA
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 11
%P 1127-1140
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400540

TY - JOUR
T1 - A dual-focal-plane augmented reality head-up display optical system adapted for heavy-haul locomotives
A1 - Huoping YI
A1 - Fuhao CHANG
A1 - Yan CHEN
A1 - Ping TAN
A1 - Zhen XU
A1 - Yongbo WU
A1 - Jin DING
A1 - Jien MA
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 11
SP - 1127
EP - 1140
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400540


Abstract: 
Heavy-haul locomotives operate in complex and dynamic environments. Drivers are required to frequently monitor numerous displays within the cab and track conditions, and switching the line of sight will result in driving blind for a certain distance. This can easily lead to visual fatigue and safety incidents over extended periods. In this paper, we propose a dual-focal-plane augmented reality head-up display (AR-HUD) system adapted for heavy-haul locomotives, integrating dual picture generation units (PGUs) with two freeform surfaces to achieve the display of near-field and far-field. Due to the large inclination angle of the windshield in heavy-haul locomotives, there are significant aberrations of the optical system and the virtual image quality of the far-field needs to be improved. To address this issue, we introduce two freeform surfaces into the optical path of the far-field to reduce aberration. The increased structural degrees of freedom facilitate subsequent optimization. Following optimization of the system, the maximum root mean square (RMS) radius within the eyebox regions E1 to E5 was smaller than the Airy disk radius, and the modulation transfer function (MTF) value at the cutoff frequency exceeded 0.3. Grid distortion was less than 5%, and at the cutoff frequency of 4.31 line pairs per millimeter (lp/mm), over 98% of the MTF was greater than 0.3. The image quality and overall imaging performance were excellent, with reasonable tolerance distribution, demonstrating the feasibility of this design. This configuration allows for the simultaneous display of both far-field and near-field images, enhancing its applicability in rail transport. The feasibility of this innovative AR-HUD system has been validated through user interface (UI) simulation.

适配重载机车的双焦面增强现实平视显示系统

作者:易火平1,常富豪1,陈岩1,谭平1,徐振1,武永波1,丁进1,马吉恩2
机构:1浙江科技大学,自动化与电气工程学院,中国杭州,310023;2浙江大学,电气工程学院,中国杭州,310027
目的:重载机车运行环境复杂且仪表及显示屏幕较多,司机频繁观察操作表盘存在安全隐患。本文旨在研究一种适配重载机车的双焦面增强现实抬头显示(AR-HUD)系统,在考虑重载机车运行环境和司机驾驶习惯的情况下设计适配的光学结构,以提高机车运行的安全性。
创新点:1.考虑到机车的运行工况,研究双光源双焦面的光路结构对成像质量的影响,优化光路结构的成像性能;2.重载机车风挡倾角越大,对光路结构的成像性能影响越大,可通过增加自由曲面和设计优化策略来改善成像性能。
方法:1.通过已有的车载HUD光路结构设计思路,考虑重载机车的运行工况,设定光学系统的参数指标,并设计双光源双焦面的光路结构(图2);2.在光学结构中增加自由曲面以提高该结构的自由度,然后设计优化策略,进行波像差和调制传递函数(MTF)优化,并通过公差分析的结果来验证优化策略的有效性(图16)。
结论:1.在体积允许的情况下,双光源的光路结构可以增强投影的成像性能;2.给远投影增加自由曲面有助于设计更优的光路,并优化风挡倾角引入的系统像差;3.优化后的系统成像性能指标良好,公差设置合理,且双图像生成单元(PGU)的分区域投影可降低机车运行中的安全隐患。

关键词:光学系统;离轴反射结构;自由曲面;用户界面(UI)模拟

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AnZ, MengXP, JiX, et al., 2021. Notice of violation of IEEE publication principles: design and performance of an off-axis free-form mirror for a rear mounted augmented-reality head-up display system. IEEE Photonics Journal, 13(1):1-15. http://doi.org/10.1109/JPHOT.2021.3052726

[2]DaiGY, YangH, YinLQ, et al., 2024. Compact pupil-expansion AR-HUD based on surface-relief grating. Optics Express, 32(5):6917-6928. http://doi.org/10.1364/OE.513577

[3]DingY, ZhangNW, YangC, et al., 2024. Design of freeform surface low-distortion automotive lens based on point-by-point construction. Acta Optica Sinica, 44(14):223-233 (in Chinese). http://doi.org/10.3788/AOS240574

[4]FanRD, WeiSL, JiHR, et al., 2023. Automated design of freeform imaging systems for automotive heads-up display applications. Optics Express, 31(6):10758-10774. http://doi.org/10.1364/OE.484777

[5]FanCX, KongLB, YangB, et al., 2023. Design of dual-focal-plane AR-HUD optical system based on a single picture generation unit and two freeform mirrors. Photonics, 10(11):1192. http://doi.org/10.3390/photonics10111192

[6]HuangXZ, HuSJ, TangGM, et al., 2019. Optical structure design of automotive head-up display with long-distance imaging. Journal of Applied Optics, 40(5):894-900 (in Chinese). http://doi.org/10.5768/JAO201940.0505006

[7]JiangQB, GuoZY, 2023. AR-HUD optical system design and its multiple configurations analysis. Photonics, 10(9):954. http://doi.org/10.3390/photonics10090954

[8]KongXX, XueCX, 2022. Optical design of dual-focal-plane head-up display based on dual picture generation units. Acta Optica Sinica, 42(14):1422003 (in Chinese). http://doi.org/10.3788/AOS202242.1422003

[9]LiY, LiY, HeYL, et al., 2018. Design of compact freeform off-axis three-mirror system. Journal of Applied Optics, 39(6):780-784. http://doi.org/10.5768/JAO2018-39.0601003

[10]LiY, QiuL, ZhiY, et al., 2023. An overview of bearing voltages and currents in rail transportation traction motors. Journal of Zhejiang University-SCIENCE A, 24(3):226-242.

[11]LiuY, DongJQ, QiuYQ, et al., 2023. Compact dual-focal augmented reality head-up display using a single picture generation unit with polarization multiplexing. Optics Express, 31(22):35922-35936. http://doi.org/10.1364/OE.502617

[12]LvZL, LiuJ, XuLF, 2021. A multi-plane augmented reality head-up display system based on volume holographic optical elements with large area. IEEE Photonics Journal, 13(5):5200108. http://doi.org/10.1109/JPHOT.2021.3105670

[13]LvZL, LiuJ, YangY, 2022. Dual-view and multi-content head-up display using a single picture generation unit and two-layer volume holographic grating. IEEE Photonics Journal, 14(4):1-8. http://doi.org/10.1109/JPHOT.2022.3181620

[14]MaJN, LuoC, QiuL, et al., 2023. Recent advances in traction drive technology for rail transit. Journal of Zhejiang University-SCIENCE A, 24(3):177-188.

[15]MerendaC, KimH, TanousK, et al., 2018. Augmented reality interface design approaches for goal-directed and stimulus-driven driving tasks. IEEE Transactions on Visualization and Computer Graphics, 24(11):2875-2885. http://doi.org/10.1109/TVCG.2018.2868531

[16]PanY, LiuH, LiuHJ, 2021. Application feasibility analysis of head-up display technology in rail transit. Control and Information Technology, (6):91-95 (in Chinese). http://doi.org/10.13889/j.issn.2096-5427.2021.06.013

[17]QinZ, LinSM, LuoKT, et al., 2019. Dual-focal-plane augmented reality head-up display using a single picture generation unit and a single freeform mirror. Applied Optics, 58(20):5366-5374. http://doi.org/10.1364/AO.58.005366

[18]RanSW, LiuXM, LeiXH, et al., 2022. Three-dimensional shape measurement of head-up display virtual image based on binocular vision. Acta Optica Sinica, 42(19):1912001 (in Chinese). http://doi.org/10.3788/AOS202242.1912001

[19]RenJW, ChenXW, WangB, et al., 2023. Design and optimization of dual-focal vehicle head-up display optical system based on single-optical machine. Acta Photonica Sinica, 52(8):0822001 (in Chinese). http://doi.org/10.3788/gzxb20235208.0822001

[20]SunYH, WuSJ, WangB, et al., 2024. Design and optimization of a head-up display system with variable projection distance. Acta Optica Sinica, 44(8):0822001 (in Chinese). http://doi.org/10.3788/AOS231914

[21]TianML, XueCX, 2024. Design of variable focal plane dual-light-path vehicle head-up display system. Acta Optica Sinica, 44(14):1422001. http://doi.org/10.3788/AOS240680

[22]WangSL, LinZJ, XuSX, et al., 2023. Research progress of vergence-accommodation conflict in near-eye display based on augmented reality. Acta Optica Sinica, 43(23):2300001 (in Chinese). http://doi.org/10.3788/AOS231074

[23]WangT, LiHF, 2024. Dynamic distortion assessment in automobile head-up displays with subjective methods. Acta Optica Sinica, 44(5):0533001 (in Chinese). http://doi.org/10.3788/AOS231831

[24]WuP, ChenLF, WeiYT, 2024. Research on calibration and testing of AR-HUD optical parameters. Shanghai Auto, (3):35-38 (in Chinese). http://doi.org/10.3969/j.issn.1007-4554.2024.03.06

[25]WuY, FuH, BianX, et al., 2023. Impact of extreme climate and train traffic loads on the performance of high-speed railway geotechnical infrastructures. Journal of Zhejiang University-SCIENCE A, 24(3):189-205.

[26]XuN, YuFZ, XuJ, et al., 2023. HUDNet: a dynamic calibration method for automotive augmented reality head-up-displays. Displays, 78:102453. http://doi.org/10.1016/j.displa.2023.102453

[27]YanusikI, KalininaA, MorozovA, et al., 2021. Pupil replication waveguide system for autostereoscopic imaging with a wide field of view. Optics Express, 29(22):36287-36301. http://doi.org/10.1364/OE.439855

[28]YuML, LiCH, WuJC, et al., 2023. Exploring the attention level of AR-HUD interface elements based on driving scenarios. The 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), p.117-121. http://doi.org/10.1109/ICMIMT59138.2023.10199531

[29]ZhangYL, SuZP, PanHX, et al., 2020. Optical design and tolerance analysis of freeform automotive head-up display. Acta Photonica Sinica, 49(9):0922002 (in Chinese). http://doi.org/10.3788/gzxb20204909.0922002

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE