Full Text:   <646>

Summary:  <110>

CLC number: 

On-line Access: 2025-08-27

Received: 2025-04-25

Revision Accepted: 2025-06-02

Crosschecked: 2025-08-28

Cited: 0

Clicked: 434

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jun Ma

https://orcid.org/0000-0002-6127-000X

Zhao LEI

https://orcid.org/0000-0002-8046-0650

Chunni WANG

https://orcid.org/0000-0002-4688-7888

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.8 P.755-770

http://doi.org/10.1631/jzus.A2500150


Continuous energy exchange between magnetic fields supporting memristive neuron firing


Author(s):  Zhao LEI, Qun GUO, Chunni WANG, Jun MA

Affiliation(s):  School of Automation and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; more

Corresponding email(s):   hyperchaos@lut.edu.cn

Key Words:  Neural circuit, Hamilton energy, Memristor, Stochastic resonance, Adaptive parameter growth


Zhao LEI, Qun GUO, Chunni WANG, Jun MA. Continuous energy exchange between magnetic fields supporting memristive neuron firing[J]. Journal of Zhejiang University Science A, 2025, 26(8): 755-770.

@article{title="Continuous energy exchange between magnetic fields supporting memristive neuron firing",
author="Zhao LEI, Qun GUO, Chunni WANG, Jun MA",
journal="Journal of Zhejiang University Science A",
volume="26",
number="8",
pages="755-770",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2500150"
}

%0 Journal Article
%T Continuous energy exchange between magnetic fields supporting memristive neuron firing
%A Zhao LEI
%A Qun GUO
%A Chunni WANG
%A Jun MA
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 8
%P 755-770
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2500150

TY - JOUR
T1 - Continuous energy exchange between magnetic fields supporting memristive neuron firing
A1 - Zhao LEI
A1 - Qun GUO
A1 - Chunni WANG
A1 - Jun MA
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 8
SP - 755
EP - 770
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2500150


Abstract: 
Biological neurons can be excited to maintain certain firing patterns following different external stimuli, and similar changes in electrical activities can be reproduced in some neural circuits by applying an external voltage. Generic neural circuits are composed of capacitors, induction coils, resistors, and nonlinear resistors, and continuous energy exchange between the capacitive and inductive components is crucial for preserving output voltages. Incorporating nonlinear elements causes interactions between the charge flow across the capacitor and the induced electromotive force on the inductor. It is a challenge to explore the occurrence of nonlinear oscillation and coherence resonance in a neural circuit without using a capacitor and nonlinear resistor, and it considers the case lack of electric field energy. In this paper, a simple neural circuit is proposed that combines two inductors, one magnetic flux-controlled memristor (MFCM), and three resistors, with two constant voltage sources in the branch circuits used as reverse potentials in the ion channels. The field energy has an exact form, and it is stored in the circuit components as a magnetic field. Scale transformation is applied on the circuit equations and field energy function to obtain equivalent dimensionless forms of the memristive neuron and hamilton energy. The reference values for the physical time and capacitance are represented by an appropriate combination of resistance and inductance, because the capacitance value is unavailable. The memristive neuron without capacitive effect still shows similar firing patterns, and coherence resonance is induced under noisy excitation. The emergence of coherence resonance can be predicted by calculating the distribution of the average energy <H> versus noise intensity, and the value for <H> reaches a maximum under coherence resonance. Finally, an adaptive law for parameter growth under energy control is proposed to control mode transitions in the electrical activity. The methodology and results of this work offer insights into the oscillatory mechanism of neural circuits, and showcase how magnetic field control can be used to manage neural activations.

持续的磁场能量交换维系忆阻神经元的放电

作者:雷召1,郭群1,王春妮2,马军1,2
机构:1兰州理工大学,自动化与电器工程学院,中国兰州,730050;2兰州理工大学,理学院,中国兰州,730050
目的:神经元电路的振荡源于其内部电场和磁场能量的持续交换。当电容器损坏或者缺失时,对神经元电路进行改造并产生连续的神经电信号非常关键。神经元电路通常包含电容器、电感线圈、电阻和非线性器件,且这些非线性电路的动力学分析必须在无量纲模型中进行。在对电路方程进行标度变化时需要引入时间标度和电压标度(时间标度一般包含电容参量),而当电容器缺失时,时间标度则无法直接定义。因此,定义新的时间标度就具有重要的科学意义。
创新点:1.在电容参量缺失时以电感参数和电阻参数的组合定义了新的时间基准和能量基准(标度变换的基准值)。2.神经元电路能量以磁场方式存储于磁控忆阻器和感应线圈支路,且持续的能量交换保障了神经元电路持续振荡。3.定义了场能量函数和对应的哈密顿能量函数,解释了放电模态对能量的依赖性,并进一步提出基于能量控制的自适应律来控制参数增长。
方法:1.采用单个磁控忆阻器并联两个电感线圈,并在线圈支路引入恒定电压源表示离子通道反转电位。2.计算神经元各个支路场能量,利用标度变换把神经元电路场能量函数转化为无量纲的形式,并进一步利用赫姆霍兹定理证明该能量函数。3.通过计算该忆阻神经元模型的变量序列进行分岔分析,进一步施加通道噪声诱发随机共振并利用哈密顿能量函数平均值来预测随机共振。4.基于能量流对神经元参数进行自适应调控,以实现对放电模态的控制。
结论:1.神经元电路的持续振荡源于各个支路器件持续的能量交换。2.电容器缺失时,基于磁控的元件如电感线圈和磁控忆阻器,在支路恒定电压源驱动下神经元电路依然能产生持续电信号。3.能量值决定着神经元的放电模态,且能量操控可以改变神经元的放电特征。4.没有时变电场的神经元电路和无电容性变量的忆阻神经元同样能有效展示神经元电活动的动力学特征。

关键词:神经元电路;哈密顿能量;忆阻器;随机共振;自适应参数增长

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AltanMA, OrmanK, BabacanY, et al., 2024. Special memristor and memristor-based compact neuron circuit. Journal of Circuits, Systems and Computers, 33(5):2450091.

[2]AscoliA, CorintoF, 2013. Memristor models in a chaotic neural circuit. International Journal of Bifurcation and Chaos, 23(3):1350052.

[3]BabacanY, KaçarF, GürkanK, 2016. A spiking and bursting neuron circuit based on memristor. Neurocomputing, 203:86-91.

[4]BrüttM, KaernbachC, 2021. On the role of the excitation/inhibition balance of homeostatic artificial neural networks. Entropy, 23(12):1681.

[5]BuzsákiG, DraguhnA, 2004. Neuronal oscillations in cortical networks. Science, 304(5679):1926-1929.

[6]ChenL, LiXL, TjiaM, et al., 2022. Homeostatic plasticity and excitation-inhibition balance: the good, the bad, and the ugly. Current Opinion in Neurobiology, 75:102553.

[7]ChenZQ, TangH, WangZL, et al., 2015. Design and circuit implementation for a novel charge-controlled chaotic memristor system. Journal of Applied Analysis & Computation, 5(2):251-261.

[8]ChengS, WangNG, ArnoldDP, 2007. Modeling of magnetic vibrational energy. harvesters using equivalent circuit representations. Journal of Micromechanics and Microengineering, 17(11):2328.

[9]ChuaL, 1971. Memristor–the missing circuit element. IEEE Transactions on Circuit Theory, 18(5):507-519.

[10]DagarS, ChowdhurySR, BapiRS, et al., 2016. Near-infrared spectroscopy-electroencephalography-based brain-state-dependent electrotherapy: a computational approach based on excitation-inhibition balance hypothesis. Frontiers in Neurology, 7:123.

[11]DouglasRJ, MartinKAC, 2004. Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27:419-451.

[12]DuSC, DengQ, HongQH, et al., 2022. A memristor-based circuit design and implementation for blocking on Pavlov associative memory. Neural Computing and Applications, 34(17):14745-14761.

[13]FroemkeRC, MerzenichMM, SchreinerCE, 2007. A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168):425-429.

[14]GaoR, PetersonEJ, VoytekB, 2017. Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage, 158:70-78.

[15]GraasEL, BrownEA, LeeRH, 2004. An FPGA-based approach to high-speed simulation of conductance-based neuron models. Neuroinformatics, 2(4):417-435.

[16]GuoYT, MaJ, 2025. An electromechanical arm model controlled by artificial muscles. Science China Technological Sciences, 68(4):1420403.

[17]GuoYT, MaJ, ZhangXF, et al., 2024. Memristive oscillator to memristive map, energy characteristic. Science China Technological Sciences, 67(5):1567-1578.

[18]HouS, WangHD, FanDG, et al., 2024. The effects of negative regulation on the dynamical transition in epileptic network. International Journal of Bifurcation and Chaos, 34(3):2450038.

[19]IndiveriG, Linares-BarrancoB, HamiltonTJ, et al., 2011. Neuromorphic silicon neuron circuits. Frontiers in Neuroscience, 5:73.

[20]IsaacJTR, CrairMC, NicollRA, et al., 1997. Silent synapses during development of thalamocortical inputs. Neuron, 18(2):269-280.

[21]IzhikevichEM, 2006. Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press, Cambridge, Massachusetts, USA.

[22]JiaJE, WangCN, ZhangXF, et al., 2024. Energy and self-adaption in a memristive map neuron. Chaos, Solitons & Fractals, 182:114738.

[23]JiaJN, YangFF, MaJ, 2023. A bimembrane neuron for computational neuroscience. Chaos, Solitons & Fractals, 173:113689.

[24]JiaJN, XieY, WangCN, et al., 2024. Thermosensitive double-membrane neurons and their network dynamics. Physica Scripta, 99(11):115030.

[25]KatzLC, ShatzCJ, 1996. Synaptic activity and the construction of cortical circuits. Science, 274(5290):1133-1138.

[26]KirischukS, 2022. Keeping excitation‍–inhibition ratio in balance. International Journal of Molecular Sciences, 23(10):5746.

[27]LeiZ, MaJ, 2025. Coherence resonance and energy dynamics in a memristive map neuron. Chaos: An Interdisciplinary Journal of Nonlinear Science, 35(2):023158.

[28]LiCL, YangYY, DuJR, et al., 2021. A simple chaotic circuit with magnetic flux-controlled memristor. The European Physical Journal Special Topics, 230(7):1723-1736.

[29]LiSQ, LiuZ, ZhaoH, et al., 2016. Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Transactions on Industrial Electronics, 63(10):6602-6612.

[30]LiZJ, ChenKJ, 2023. Neuromorphic behaviors in a neuron circuit based on current-controlled Chua corsage memristor. Chaos, Solitons & Fractals, 175:114017.

[31]LiuF, LiHY, HuW, et al., 2024. Review of neural network model acceleration techniques based on FPGA platforms. Neurocomputing, 610:128511.

[32]MaJ, 2023. Biophysical neurons, energy, and synapse controllability: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(2):109-129.

[33]MaJ, YangZQ, YangLJ, et al., 2019. A physical view of computational neurodynamics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(9):639-659.

[34]MaoYD, DongYJ, LuZZ, et al., 2025. Second-order locally active memristor based neuronal circuit. Chaos, Solitons & Fractals, 195:116279.

[35]MoonJ, LeebSB, 2016. Power electronic circuits for magnetic energy harvesters. IEEE Transactions on Power Electronics, 31(1):270-279.

[36]PershinYV, di VentraM, 2011. Memory effects in complex materials and nanoscale systems. Advances in Physics, 60(2):145-227.

[37]SchroedermeierA, LudoisDC, 2017. Integrated inductor and capacitor with co-located electric and magnetic fields. IEEE Transactions on Industry Applications, 53(1):‍380-390.

[38]ShaoY, WuFQ, WangQY, 2024. Synchronization and complex dynamics in locally active threshold memristive neurons with chemical synapses. Nonlinear Dynamics, 112(15):13483-13502.

[39]ShiF, CaoYH, BanerjeeS, et al., 2025. A neuronal circuit based on a second-order memristor. Nonlinear Dynamics, 113(10):12165-12183.

[40]ShiSY, LiangY, LiYQ, et al., 2024. A neuron circuit based on memristor and negative capacitor: dynamics analysis and hardware implementation. Chaos, Solitons & Fractals, 180:114534.

[41]SpornsO, 2010. Networks of the Brain. MIT Press, Cambridge, Massachusetts, USA.

[42]StrukovDB, SniderGS, StewartDR, et al., 2008. The missing memristor found. Nature, 453(7191):80-83.

[43]TakemboCN, MvogoA, Ekobena FoudaHP, et al., 2019. Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dynamics, 95(2):1067-1078.

[44]WanJY, WuFQ, MaJ, et al., 2024. Dynamics and synchronization of neural models with memristive membranes under energy coupling. Chinese Physics B, 33(5):050504.

[45]WangBC, LvM, ZhangXF, et al., 2024. Dynamics in a light-sensitive neuron with two capacitive variables. Physica Scripta, 99(5):055225.

[46]WangCH, LuoZQ, 2022. A review of the optimal design of neural networks based on FPGA. Applied Sciences, 12(21):10771.

[47]WangCN, TangJ, MaJ, 2019. Minireview on signal exchange between nonlinear circuits and neurons via field coupling. The European Physical Journal Special Topics, 228(10):1907-1924.

[48]WangXJ, 2010. Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3):1195-1268.

[49]WuFQ, WangRB, 2023. Synchronization in memristive HR neurons with hidden coexisting firing and lower energy under electrical and magnetic coupling. Communications in Nonlinear Science and Numerical Simulation, 126:107459.

[50]XuQ, FangYJ, FengCT, et al., 2024a. Firing activity in an N-type locally active memristor-based Hodgkin-Huxley circuit. Nonlinear Dynamics, 112(15):13451-13464.

[51]XuQ, DingXC, WangN, et al., 2024b. Spiking activity in a memcapacitive and memristive emulator-based bionic circuit. Chaos, Solitons & Fractals, 187:115339.

[52]YangFF, MaJ, RenGD, 2024a. A Josephson junction-coupled neuron with double capacitive membranes. Journal of Theoretical Biology, 578:111686.

[53]YangFF, MaJ, WuFQ, 2024b. Review on memristor application in neural circuit and network. Chaos, Solitons & Fractals, 187:115361.

[54]ZhaoJY, YuY, HanF, et al., 2024. Dynamic modeling and closed-loop modulation for absence seizures caused by abnormal glutamate uptake from astrocytes. Nonlinear Dynamics, 112(5):3903-3916.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE