Full Text:   <5>

CLC number: 

On-line Access: 2026-02-02

Received: 2025-07-24

Revision Accepted: 2025-12-29

Crosschecked: 0000-00-00

Cited: 0

Clicked: 7

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 1998 Vol.-1 No.-1 P.

http://doi.org/10.1631/jzus.A2500344


Hierarchical learning method for array flow field prediction integrated with deep neural network


Author(s):  Shanxun SUN1, Zijiang XU1, Zhuoheng WANG1, Shuangshuang CUI2, Ting HE1, Yang CAI1

Affiliation(s):  1Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China 2Guangdong-Hong Kong-Macao Greater Bay Area Meteorological Intelligent Equipment Research Center, Guangzhou 511430, China

Corresponding email(s):   Ting HE, heting@jnu.edu.cn Yang CAI, thomascai301@163.com

Key Words:  Hierarchical learning, Integrated neural network, Wind farms, Ultra-short-term wake prediction


Shanxun SUN1, Zijiang XU1, Zhuoheng WANG1, Shuangshuang CUI2, Ting HE1, Yang CAI1. Hierarchical learning method for array flow field prediction integrated with deep neural network[J]. Journal of Zhejiang University Science A, 1998, -1(-1): .

@article{title="Hierarchical learning method for array flow field prediction integrated with deep neural network",
author="Shanxun SUN1, Zijiang XU1, Zhuoheng WANG1, Shuangshuang CUI2, Ting HE1, Yang CAI1",
journal="Journal of Zhejiang University Science A",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2500344"
}

%0 Journal Article
%T Hierarchical learning method for array flow field prediction integrated with deep neural network
%A Shanxun SUN1
%A Zijiang XU1
%A Zhuoheng WANG1
%A Shuangshuang CUI2
%A Ting HE1
%A Yang CAI1
%J Journal of Zhejiang University SCIENCE A
%V -1
%N -1
%P
%@ 1673-565X
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2500344

TY - JOUR
T1 - Hierarchical learning method for array flow field prediction integrated with deep neural network
A1 - Shanxun SUN1
A1 - Zijiang XU1
A1 - Zhuoheng WANG1
A1 - Shuangshuang CUI2
A1 - Ting HE1
A1 - Yang CAI1
J0 - Journal of Zhejiang University Science A
VL - -1
IS - -1
SP -
EP -
%@ 1673-565X
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2500344


Abstract: 
Real-time and accurate dynamic wake information is essential for wind resource assessment and the optimization of wind farm operations. To further understand the wake characteristics of wind turbines, we propose a hierarchical learning approach integrated with a deep neural network-based prediction method. The integrated framework combines physical and mathematical models, enabling three-dimensional spatiotemporal wind field predictions with minimal measured data requirements. Evaluation and validation results demonstrate that the proposed method achieves accurate short-term wake predictions across the entire domain with minimal prediction errors. Compared with conventional methods, the proposed hierarchical learning framework markedly lowers the training-data requirements of physics-informed neural networks for large-scale flow-field prediction while maintaining high accuracy. In addition, it demonstrates superior performance in both local and global wake forecasts, offering practical insights for efficient turbine operation and wake analysis.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE