Full Text:   <3074>

Summary:  <1977>

CLC number: TM73

On-line Access: 2015-05-05

Received: 2014-05-18

Revision Accepted: 2014-10-22

Crosschecked: 2015-03-04

Cited: 3

Clicked: 7247

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Salman Zafar

http://orcid.org/0000-0002-7449-5275

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.5 P.404-417

http://doi.org/10.1631/FITEE.1400189


An improved chaotic hybrid differential evolution for the short-term hydrothermal scheduling problem considering practical constraints


Author(s):  Tahir Nadeem Malik, Salman Zafar, Saaqib Haroon

Affiliation(s):  Electrical Engineering Department, University of Engineering and Technology, Taxila 47050, Pakistan

Corresponding email(s):   tahir.nadeem@uettaxila.edu.pk, salman.zafar@ucp.edu.pk

Key Words:  Valve-point effect, Prohibited discharge zones, Differential evolution, Chaotic sequences, Constraint handling


Tahir Nadeem Malik, Salman Zafar, Saaqib Haroon. An improved chaotic hybrid differential evolution for the short-term hydrothermal scheduling problem considering practical constraints[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(5): 404-417.

@article{title="An improved chaotic hybrid differential evolution for the short-term hydrothermal scheduling problem considering practical constraints",
author="Tahir Nadeem Malik, Salman Zafar, Saaqib Haroon",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="5",
pages="404-417",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1400189"
}

%0 Journal Article
%T An improved chaotic hybrid differential evolution for the short-term hydrothermal scheduling problem considering practical constraints
%A Tahir Nadeem Malik
%A Salman Zafar
%A Saaqib Haroon
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 5
%P 404-417
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1400189

TY - JOUR
T1 - An improved chaotic hybrid differential evolution for the short-term hydrothermal scheduling problem considering practical constraints
A1 - Tahir Nadeem Malik
A1 - Salman Zafar
A1 - Saaqib Haroon
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 5
SP - 404
EP - 417
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1400189


Abstract: 
Short-term hydrothermal scheduling (STHTS) is a non-linear and complex optimization problem with a set of operational hydraulic and thermal constraints. Earlier, this problem has been addressed by several classical techniques; however, due to limitations such as non-linearity and non-convexity in cost curves, artificial intelligence tools based techniques are being used to solve the STHTS problem. In this paper an improved chaotic hybrid differential evolution (ICHDE) algorithm is proposed to find an optimal solution to this problem taking into account practical constraints. A self-adjusted parameter setting is obtained in differential evolution (DE) with the application of chaos theory, and a chaotic hybridized local search mechanism is embedded in DE to effectively prevent it from premature convergence. Furthermore, heuristic constraint handling techniques without any penalty factor setting are adopted to handle the complex hydraulic and thermal constraints. The superiority and effectiveness of the developed methodology are evaluated by its application in two illustrated hydrothermal test systems taken from the literature. The transmission line losses, prohibited discharge zones of hydel plants, and ramp rate limits of thermal plants are also taken into account. The simulation results reveal that the proposed technique is competent to produce an encouraging solution as compared with other recently established evolutionary approaches.

改进的混沌混合差分进化方法用于有现实限制的短期水-火电系统调度问题

目的:短期水-火电系统调度(STHTS)是含有一系列水、火电操作限制的非线性复杂最优化问题。此前,该问题已由许多常规方法解决。由于该问题代价曲线具有非线性和非凸性特点,人工智能方法也开始被应用于STHTS。在考虑现实限制条件的情况下,本文提出一种改进的混沌混合差分计划算法以获取STHTS的最优解。
创新点:针对差分进化存在控制参数为常数且获取时间较耗时和早熟收敛的问题,着重处理自调整参数集,通过防止早熟收敛和处理复杂限制提升差分进化的性能。
方法:本文方法流程(图1)关键点为:应用混沌理论获得差分进化中的自调整控制参数集;将混沌混合局部搜索机制应用于差分进化以有效防止其陷入早熟收敛;最后,应用不含惩罚因子集的启发式约束处理方解决水-火电的复杂限制。
结论:本文方法的优势和有效性在以往文献提出的两个虚拟水-火电测试系统上进行了评估(Lakshminarasimman and Subramanian (2008))。此外,传输线损耗、水电站禁止排放区、火电站斜率限制等因素也被纳入仿真环境。仿真结果表明,与最近提出的其他进化方法相比,本文方法在降低水-火电系统成本和减少计算时间方面有竞争力。

关键词:阀点效应;禁止排放区;差分进化;混沌序列;限制处理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amjady, N., Soleymanpour, H.R., 2010. Daily hydrothermal generation scheduling by a new modified adaptive particle swarm optimization technique. Electr. Power Syst. Res., 80(6):723-732.

[2]Basu, M., 2014. Improved differential evolution for short-term hydrothermal scheduling. Int. J. Electr. Power Energy Syst., 58:91-100.

[3]Bhattacharjee, K., Bhattacharya, A., Halder Nee Dey, S., 2014. Oppositional real coded chemical reaction based optimization to solve short-term hydrothermal scheduling problems. Int. J. Electr. Power Energy Syst., 63:145-157.

[4]Caponetto, R., Fortuna, L., Fazzino, S., et al., 2003. Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput., 7(3):289-304.

[5]Chang, G.W., Aganagic, M., Waight, J.G., et al., 2001. Experiences with mixed integer linear programming based approaches on short-term hydro scheduling. IEEE Trans. Power Syst., 16(4):743-749.

[6]Chang, S.C., Chen, C.H., Fong, I.K., et al., 1990. Hydro-electric generation scheduling with an effective differential dynamic programming algorithm. IEEE Trans. Power Syst., 5(3):737-743.

[7]Coelho, L.D.S., Lee, C.S., 2008. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. Int. J. Electr. Power Energy Syst., 30(5):297-307.

[8]Fang, N., Zhou, J., Zhang, R., et al., 2014. A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling. Int. J. Electr. Power Energy Syst., 62:617-629.

[9]Gil, E., Bustos, J., Rudnick, H., 2003. Short-term hydro-thermal generation scheduling model using a genetic algorithm. IEEE Trans. Power Syst., 18(4):1256-1264.

[10]Hota, P., Barisal, A., Chakrabarti, R., 2009. An improved PSO technique for short-term optimal hydrothermal scheduling. Electr. Power Syst. Res., 79(7):1047-1053.

[11]Kong, F.N., Wu, J.K., 2010. Cultural algorithm based short-term scheduling of hydrothermal power systems. Int. Conf. on E-Product E-Service and E-Entertainment, p.1-4.

[12]Kumar, S., Naresh, R., 2007. Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem. Int. J. Electr. Power Energy Syst., 29(10):738-747.

[13]Lakshminarasimman, L., Subramanian, S., 2006. Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. IEE Proc.-Gener. Transm. Distr., 153(6):693-700.

[14]Lakshminarasimman, L., Subramanian, S., 2008. A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs. Energy Conv. Manag., 49(10):2513-2521.

[15]Li, C.A., Jap, P.J., Streiffert, D.L., 1993. Implementation of network flow programming to the hydrothermal coordi-nation in an energy management system. IEEE Trans. Power Syst., 8(3):1045-1053.

[16]Liao, X., Zhou, J., Ouyang, S., et al., 2013. An adaptive chaotic artificial bee colony algorithm for short-term hydrothermal generation scheduling. Int. J. Electr. Power Energy Syst., 53:34-42.

[17]Lu, S., Sun, C., Lu, Z., 2010. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling. Energy Conv. Manag., 51(3):561-571.

[18]Lu, Y., Zhou, J., Qin, H., et al., 2010. An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem. Energy Conv. Manag., 51(7):1481-1490.

[19]Mallipeddi, R., Suganthan, P.N., Pan, Q.K., et al., 2011. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput., 11(2):1679-1696.

[20]Mandal, K., Chakraborty, N., 2008. Differential evolution technique-based short-term economic generation sche-duling of hydrothermal systems. Electr. Power Syst. Res., 78(11):1972-1979.

[21]Mandal, K.K., Basu, M., Chakraborty, N., 2008. Particle swarm optimization technique based short-term hydro-thermal scheduling. Appl. Soft Comput., 8(4):1392-1399.

[22]Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A., 2006. A comparative study of differential evolution variants for global optimization. Proc. 8th Annual Conf. on Genetic and Evolutionary Computation, p.485-492.

[23]Mohan, M., Kuppusamy, K., Khan, M.A., 1992. Optimal short-term hydrothermal scheduling using decomposi-tion approach and linear programming method. Int. J. Electr. Power Energy Syst., 14(1):39-44.

[24]Pereira, M., Pinto, L., 1983. Application of decomposition techniques to the mid- and short-term scheduling of hydrothermal systems. IEEE Trans. Power Appar. Syst., PAS-102(11):3611-3618.

[25]Piekutowski, M., Litwinowicz, T., Frowd, R., 1994. Optimal short-term scheduling for a large-scale cascaded hydro system. IEEE Trans. Power Syst., 9(2):805-811.

[26]Redondo, N.J., Conejo, A., 1999. Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem. IEEE Trans. Power Syst., 14(1):89-95.

[27]Roy, P.K., 2013. Teaching learning based optimization for short-term hydrothermal scheduling problem considering valve point effect and prohibited discharge constraint. Int. J. Electr. Power Energy Syst., 53:10-19.

[28]Shan, L., Qiang, H., Li, J., et al., 2005. Chaotic optimization algorithm based on tent map. Contr. Dec., 20(2):179-182.

[29]Sinha, N., Chakrabarti, R., Chattopadhyay, P., 2003. Fast evolutionary programming techniques for short-term hydrothermal scheduling. Electr. Power Syst. Res., 66(2): 97-103.

[30]Storn, R., Price, K., 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 11(4):341-359.

[31]Swain, R., Barisal, A., Hota, P., et al., 2011. Short-term hydrothermal scheduling using clonal selection algo-rithm. Int. J. Electr. Power Energy Syst., 33(3):647-656.

[32]Tang, J., Luh, P.B., 1995. Hydrothermal scheduling via extended differential dynamic programming and mixed coordination. IEEE Trans. Power Syst., 10(4):2021-2028.

[33]Turgeon, A., 1981. Optimal short-term hydro scheduling from the principle of progressive optimality. Water Resourc. Res., 17(3):481-486.

[34]Wang, Y., Zhou, J., Mo, L., et al., 2012. Short-term hydro-thermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm. Energy, 44(1):657-671.

[35]Wong, K., Wong, Y., 1994a. Short-term hydrothermal scheduling. I. Simulated annealing approach. IEE Proc.-Gener. Transm. Distr., 141(5):497-501.

[36]Wong, K., Wong, Y., 1994b. Short-term hydrothermal scheduling. II. Parallel simulated annealing approach. IEE Proc.-Gener. Transm. Distr., 141(5):502-506.

[37]Yang, J.S., Chen, N., 1989. Short term hydrothermal coordination using multi-pass dynamic programming. IEEE Trans. Power Syst., 4(3):1050-1056.

[38]Yang, P.C., Yang, H.T., Huang, C.L., 1996. Scheduling short-term hydrothermal generation using evolutionary programming techniques. IEE Proc.-Gener. Transm. Distr., 143(4):371-376.

[39]Yuan, X., Yuan, Y., 2006. Application of cultural algorithm to generation scheduling of hydrothermal systems. Energy Conv. Manag., 47(15-16):2192-2201.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE