Full Text:   <2580>

Summary:  <1735>

CLC number: TP242

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-06-08

Cited: 0

Clicked: 6027

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chao Li

http://orcid.org/0000-0001-7625-4996

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.7 P.579-593

http://doi.org/10.1631/FITEE.14a0230


Push recovery for the standing under-actuated bipedal robot using the hip strategy


Author(s):  Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang

Affiliation(s):  State Key Laboratory of Industrial Control Technology & Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   rxiong@iipc.zju.edu.cn

Key Words:  Push recovery, Balance control, Bipedal robot, Hip strategy


Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang. Push recovery for the standing under-actuated bipedal robot using the hip strategy[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(7): 579-593.

@article{title="Push recovery for the standing under-actuated bipedal robot using the hip strategy",
author="Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="7",
pages="579-593",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.14a0230"
}

%0 Journal Article
%T Push recovery for the standing under-actuated bipedal robot using the hip strategy
%A Chao Li
%A Rong Xiong
%A Qiu-guo Zhu
%A Jun Wu
%A Ya-liang Wang
%A Yi-ming Huang
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 7
%P 579-593
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.14a0230

TY - JOUR
T1 - Push recovery for the standing under-actuated bipedal robot using the hip strategy
A1 - Chao Li
A1 - Rong Xiong
A1 - Qiu-guo Zhu
A1 - Jun Wu
A1 - Ya-liang Wang
A1 - Yi-ming Huang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 7
SP - 579
EP - 593
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.14a0230


Abstract: 
This paper presents a control algorithm for push recovery, which particularly focuses on the hip strategy when an external disturbance is applied on the body of a standing under-actuated biped. By analyzing a simplified dynamic model of a bipedal robot in the stance phase, it is found that horizontal stability can be maintained with a suitably controlled torque applied at the hip. However, errors in the angle or angular velocity of body posture may appear, due to the dynamic coupling of the translational and rotational motions. To solve this problem, different hip strategies are discussed for two cases when (1) external disturbance is applied on the center of mass (CoM) and (2) external torque is acting around the CoM, and a universal hip strategy is derived for most disturbances. Moreover, three torque primitives for the hip, depending on the type of disturbance, are designed to achieve translational and rotational balance recovery simultaneously. Compared with closed-loop control, the advantage of the open-loop methods of torque primitives lies in rapid response and reasonable performance. Finally, simulation studies of the push recovery of a bipedal robot are presented to demonstrate the effectiveness of the proposed methods.

This paper is focused on simultaneous balance control and posture recovery problems. The balance and posture control using only the hip joint torque is a challenging and interesting problem since it contains a non-holonomic constraint. The method proposed seems effective for this problem. Overall, this is a solid paper.

基于髋策略的欠驱动双足机器人站立抗扰动恢复控制

目的:稳定站立和姿态保持是双足机器人正常作业的前提,但各种不确定的外部扰动不可避免。机器人需要通过协调关节运动使其快速恢复到原先的稳定站立状态。
创新点:本文提出一种开环bang-bang-bang控制方法,根据扰动情况设计髋关节力矩曲线,可以同时恢复欠驱动双足机器人的平衡状态和身体姿态。与闭环控制相比,本方法恢复更为迅速。
方法:首先,将外力扰动情况分为3类:1)外力通过质心,扰动仅改变平衡状态不改变身体姿态;2)外力矩扰动,扰动仅改变身体姿态不改变平衡状态;3)外力不通过质心,扰动同时改变平衡状态和身体姿态(图2)。然后,针对不同扰动情况提出对应的3种开环bang-bang-bang控制方法以及对应的髋关节力矩曲线:1)针对扰动情况1的STB控制(式14),在恢复水平稳定状态的同时不改变原先的身体直立姿态;2)针对扰动情况2的ATB控制(式18),在恢复身体直立姿态的同时不改变水平稳定状态;3)针对扰动情况3的UTB控制(式32),可以同时恢复水平稳定状态以及原先的身体直立姿态。并证明了针对最大可恢复范围内的扰动,本文的控制方法都可以同时恢复双足机器人的平衡状态和身体姿态。最后,通过4组仿真实验验证了本文方法的有效性和相比闭环控制的快速性。
结论:针对欠驱动双足机器人站立的扰动恢复问题,提出一种基于髋策略的bang-bang-bang控制方法。该方法可迅速同时恢复机器人的平衡状态及身体姿态。

关键词:扰动恢复;平衡控制;双足机器人;髋策略

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmed, S.M., Chew, C.M., Tian, B., 2013. Standing posture modeling and control for a humanoid robot. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4152-4157.

[2]Azevedo, C., Espiau, B., Amblard, B., et al., 2007. Bipedal locomotion: toward unified concepts in robotics and neuroscience. Biol. Cybern., 96(2):209-228.

[3]Horak, F.B., Nashner, L.M., 1986. Central programming of postural movements: adaptation to altered support-surface configurations. J. Neurophysiol., 55(6):1369-1381.

[4]Hyon, S., Hale, J.G., Cheng, G., 2007. Full-body compliant human-humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Robot., 23(5):884-898.

[5]Kajita, S., Tani, K., 1991. Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode. Proc. IEEE Int. Conf. on Robotics and Automation, p.1405-1411.

[6]Lee, S.H., Goswami, A., 2010. Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3157-3162.

[7]Li, Z., Vanderborght, B., Tsagarakis, N.G., et al., 2012. Stabilization for the compliant humanoid robot COMAN exploiting intrinsic and controlled compliance. Proc. IEEE Int. Conf. on Robotics and Automation, p.2000-2006.

[8]Liu, C., Atkeson, C.G., 2009. Standing balance control using a trajectory library. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3031-3036.

[9]Orin, D.E., Goswami, A., Lee, S.H., 2013. Centroidal dynamics of a humanoid robot. Auton. Robots, 35(2-3):161-176.

[10]Pratt, J., Carff, J., Drakunov, S., et al., 2006. Capture point: a step toward humanoid push recovery. Proc. IEEE-RAS Int. Conf. on Intelligent Robots, p.200-207.

[11]Runge, C.F., Shupert, C.L., Horak, F.B., et al., 1999. Ankle and hip postural strategies defined by joint torques. Gait Post., 10(2):161-170.

[12]Spong, M., 1995. The swing up control problem for the acrobat. IEEE Contr. Syst., 15(1):49-55.

[13]Stephens, B., 2007a. Humanoid push recovery. Proc. IEEE-RAS Int. Conf. on Humanoid Robots, p.589-595.

[14]Stephens, B., 2007b. Integral control of humanoid balance. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4020-4027.

[15]Stephens, B., Atkeson, C.G., 2010. Dynamic balance force control for compliant humanoid robots. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1248-1255.

[16]Wang, J., 2012. Humanoid push recovery with robust convex synthesis. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4354-4359.

[17]Wang, Y., Xiong, R., Zhu, Q., et al., 2014. Compliance control for standing maintenance of humanoid robots under unknown external disturbances. Proc. IEEE Int. Conf. on Robotics and Automation, p.2297-2304.

[18]Whitman, E.C., Stephens, B.J., Atkeson, C.G., 2012. Torso rotation for push recovery using a simple change of variables. Proc. IEEE-RAS Int. Conf. on Humanoid Robots, p.50-56.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE