Full Text:   <2369>

Summary:  <884>

CLC number: TN957.2; TP391

On-line Access: 2017-04-12

Received: 2015-10-30

Revision Accepted: 2016-02-16

Crosschecked: 2017-03-14

Cited: 0

Clicked: 3454

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.4 P.570-577

http://doi.org/10.1631/FITEE.1500371


Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator


Author(s):  Gopi Ram, Durbadal Mandal, Sakti Prasad Ghoshal, Rajib Kar

Affiliation(s):  Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur 713209, India; more

Corresponding email(s):   gopi203hardel@gmail.com

Key Words:  Patch antenna, Linear antenna array, Cat swarm optimization (CSO), Side lobe level (SLL)


Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.

@article{title="Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator",
author="Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar ",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="4",
pages="570-577",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500371"
}

%0 Journal Article
%T Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator
%A Gopi Ram
%A Durbadal Mandal
%A Sakti Prasad Ghoshal
%A Rajib Kar
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 4
%P 570-577
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500371

TY - JOUR
T1 - Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator
A1 - Gopi Ram
A1 - Durbadal Mandal
A1 - Sakti Prasad Ghoshal
A1 - Rajib Kar
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 4
SP - 570
EP - 577
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500371


Abstract: 
In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are designed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.

This paper presents an optimal design of linear antenna arrays having microstrip patch antenna elements using cat swarm optimization. Cat swarm optimization has been applied for the optimization of control parameters of radiation pattern. The paper is well written.

使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证

概要:本研究进行了微带贴片天线线性阵列的优化设计。通过猫群算法(Cat swarm optimization, CSO)优化天线阵列辐射方向图的各控制参数。通过优化每个单元的激励电流权重和阵元间隙获得各向同性天线单元阵列的最佳辐射方向图。以12、16和20单元的天线阵列为例,运用MATLAB进行阵列优化设计,采用CST-MWS对设计结果进行仿真验证。由仿真结果可见,CSO能给出微带贴片天线线性阵列的最优设计。

关键词:贴片天线;线性天线阵列;猫群优化(CSO);旁瓣水平(SLL)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ansari, J.A., Mishra, A., Yadav, N.P., et al., 2010. Analysis of pair of L-shaped slot loaded patch antenna for WLAN application. Int. Conf. on Power Control and Embedded Systems, p.1-5.

[2]Artemenko, A., Mozharovskiy, A., Sevastyanov, A., et al., 2015. Electronically beam steerable lens antenna for 71-76/81-86 GHz backhaul applications. IEEE MTT-S Int. Microwave Symp., p.1-4.

[3]Aslam, A., Bhatti, F.A., 2009. Matching technique for microstrip patch antenna using GCPW feed. Int. Conf. on Emerging Technologies, p.66-69.

[4]Balanis, C.A., 2005. Antenna Theory: Analysis and Design. John Willey & Sons, New York.

[5]Blank, S.J., Hutt, M.F., 2005. On the empirical optimization of antenna arrays. IEEE Antennas Propag. Mag., 47(2): 58-67.

[6]CST, 2013. CST Microwave Studio User’s Manual.

[7]Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress Evolutionary Computation, p.81-86.

[8]Ghatak, R., Karmakar, A., Poddar, D.R., 2015. Evolutionary optimization of Haferman carpet fractal patterned antenna array. Int. J. RF Microw. Comput.-Aid. Eng., 25(8):719-729.

[9]Güney, K., Akdaǧli, A., 2001. Null steering of linear antenna arrays using a modified tabu search algorithm. Progr. Electromagn. Res., 33:167-182.

[10]Guo, H., Guo, C., Ding, J., 2015. Pencil beam pattern synthesis of subarrayed planar array. Int. J. RF Microw. Comput.-Aid. Eng., 25(1):56-65.

[11]Haraz, O.M., Sebak, A.R., Alshebeili, S.A., 2015. Design of a printed log-periodic dipole array antenna with high gain for millimeter-wave applications. Int. J. RF Microw. Comput.-Aid. Eng., 25(3):185-193.

[12]Hardel, G.R., Yallaparagada, N.T., Mandal, D., et al., 2011. Introducing deeper nulls in time modulated linear symmetric antenna array using real coded genetic alorithm. IEEE Symp. on Computers and Informatics, p.249-254.

[13]Hassan, E.E., Ragheb, H.A., 2012. Sidelobes level reduction using spatial optimization of the array factor. IEEE Antennas Wirel. Propag. Lett., 11:756-759.

[14]Haupt, R.L., 1997. Phase-only adaptive nulling with a genetic algorithm. IEEE Trans. Antennas Propag., 45(6):1009-1015.

[15]Haupt, R.L., Werner, D.H., 2006. Genetic Algorithms in Electromagnetics. John Wiley & Sons.

[16]Hoivik, N., Ramadoss, R., 2009. MEMS devices for antenna applications. In: Liu, D., Gaucher, B., Pfeiffer, U., et al. (Eds.), Advanced Millimeter-Wave Technologies: Antennas, Packaging and Circuits. Wiley, p.483-536.

[17]Joshi, J.G., Pattnaik, S.S., Devi, S., 2012. Metamaterial embedded wearable rectangular microstrip patch antenna. Int. J. Antennas Propag., 2012:974315.

[18]Kennedy, J., Eberhart, R.C., 2001. Swarm Intelligence. Morgan Kaufmann, San Francisco, CA.

[19]Koziel, S., Ogurtsov, S., 2015. Phase-spacing optimization of linear microstrip antenna arrays using simulation-based surrogate superposition models. Int. J. RF Microw. Comput.-Aid. Eng., 25(6):536-547.

[20]Krous, J.D., 1950. Antenna. McGraw-Hill, New York.

[21]Liu, Y., Jiao, Y.C., Zhang, Y.M., 2015. A novel hybrid invasive weed optimization algorithm for pattern synthesis of array antennas. Int. J. RF Microw. Comput.-Aid. Eng., 25(2):154-163.

[22]Mandal, D., Bhattacharjee, A.K., Ghoshal, S.P., 2009. Comparative optimal designs of non-uniformly excited concentric circular antenna array using evolutionary optimization techniques. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.619-624.

[23]Mangaraj, B.B., Saha Misra, I., Sanyal, S.K., 2013. Application of bacteria foraging algorithm in designing log periodic dipole array for entire UHF TV spectrum. Int. J. RF Microw. Comput.-Aid. Eng., 23(2):157-171.

[24]Mouhamadou, M., Vaudon, P., 2007. Complex weight control of array pattern nulling. Int. J. RF Microw. Comput.-Aid. Eng., 17(3):304-310.

[25]Panduro, M.A., Brizuela, C.A., Balderas, L.I., et al., 2009a. A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Progr. Electromagn. Res. B, 13:171-186.

[26]Panduro, M.A., Reyna, A., Camacho, J., 2009b. Design of scannable linear arrays with amplitude and phase optimization for maximum side lobe level reduction. Int. J. Electron., 96(3): 323-329.

[27]Park, J., Wang, Y., Itoh, T., 2003. A 60 GHz integrated antenna array for high-speed digital beamforming applications. IEEE MTT-S Int. Microwave Symp. Digest, p.1677-1680.

[28]Park, M.Y., Eom, H.J., Park, Y.B., 2005. Coupling between coaxially fed monopoles in a parallel-plate waveguide. IEEE Trans. Antennas Propag., 53(9):3109-3112.

[29]Ram, G., Mandal, D., Ghoshal, S.P., et al., 2012. Minimization of side lobe of optimized uniformly spaced and non-uniform exited time modulated linear antenna arrays using genetic algorithm. LNCS, 7677:451-458.

[30]Ram, G., Mandal, D., Kar, R., et al., 2015a. Circular and concentric circular antenna array synthesis using cat swarm optimization. IETE Techn. Rev., 32(3):204-217.

[31]Ram, G., Mandal, D., Kar, R., et al., 2015b. Opposition-based BAT algorithm for optimal design of circular and concentric circular arrays with improved far-field radiation characteristics. Int. J. Numer. Model. Electron. Netw. Dev. Fields, in press.

[32]Ram, G., Mandal, D., Kar, R., et al., 2015c. Cat swarm optimization as applied to time-modulated concentric circular antenna array: analysis and comparison with other stochastic optimization methods. IEEE Trans. Antennas Propag., 63(9):4180-4183.

[33]Reddy, M.J., Kumar, D.N., 2007. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim., 39(1):49-68.

[34]Simon, R., Whinnery, J.R., van Duzer, T., 1994. Fields and Waves in Communication Electronics. John Wiley & Sons, Canada.

[35]Singh, M.D., Kosta, S.P., Upadhyaya, D.R., et al., 1971. On the theory of axial mode helix. IETE J. Res., 17(3):95-97.

[36]Stutzman, W.L., Thiele, G.A., 1998. Antenna Theory and Design. John Wiley & Sons.

[37]Sun, J., Sun, W., Jiang, T., et al., 2005. Directive electromagnetic radiation of a line source scattered by a conducting cylinder coated with left-handed metamaterial. Microw. Opt. Technol. Lett., 47(3):274-279.

[38]Yallaparagada, N.T., Hardel, G.R., Mandal, D., et al., 2011. Genetic algorithm for null synthesizing of circular array antennas by amplitude control. IEEE Symp. on Computers & Informatics, p.1-5.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE