Full Text:   <408>

Summary:  <206>

CLC number: TM346

On-line Access: 2017-09-08

Received: 2016-11-21

Revision Accepted: 2017-02-14

Crosschecked: 2017-08-14

Cited: 0

Clicked: 1611

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jia-qiang Yang

http://orcid.org/0000-0002-3822- 3301

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.8 P.1151-1166

http://doi.org/10.1631/FITEE.1601728


Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy


Author(s):  Jia-qiang Yang, Rong-sen Yin, Xiao-jun Zhang, Jin Huang

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   yjq1998@163.com

Key Words:  Five-phase induction machine, Pole-change, Sliding-mode control, Exponential response, Torque ripple reduction


Jia-qiang Yang, Rong-sen Yin, Xiao-jun Zhang, Jin Huang. Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(8): 1151-1166.

@article{title="Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy",
author="Jia-qiang Yang, Rong-sen Yin, Xiao-jun Zhang, Jin Huang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="8",
pages="1151-1166",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601728"
}

%0 Journal Article
%T Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy
%A Jia-qiang Yang
%A Rong-sen Yin
%A Xiao-jun Zhang
%A Jin Huang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 8
%P 1151-1166
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601728

TY - JOUR
T1 - Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy
A1 - Jia-qiang Yang
A1 - Rong-sen Yin
A1 - Xiao-jun Zhang
A1 - Jin Huang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 8
SP - 1151
EP - 1166
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601728


Abstract: 
Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (d1–q1 and d2–q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1–q1 and d2–q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the exceptional performance of the proposed electrical pole-changing strategy.

基于电流滑模控制策略的五相感应电机指数响应电子变极技术

概要:现有电子变极技术可以拓宽多相感应电机系统的恒功率调速范围,但是会带来转矩脉动和转速波动。为减小电机在变极过程中的转矩脉动和转速波动,本文研究了基于电流滑模控制策略的五相感应电机指数响应电子变极技术。本技术采用双平面(d1q1d2q2)矢量控制策略,使五相感应电机可以在不同的极对数模式下运行。电流滑模控制器取代了传统的PI控制器,以调节电流矢量,并且电流指数响应可以实现d1q1d2q2平面之间平滑的切换。同基于PI控制的阶跃响应电子变极技术相比,本文提出的方法极大地减小了感应电机在电子变极过程中的转矩脉动和速度波动。实验结果证明了本文所提出方法的有效性。

关键词:五相感应电机;电子变极;滑模控制;指数响应;转矩脉动减小

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdel-Khalik, A.S., Daoud, M.I., Ahmed, S., et al., 2014. Parameter identification of five-phase induction machines with single layer windings. IEEE Trans. Ind. Electron., 61(10):5139-5154.

[2]Abd Hafez, A.A., Todd, R., Forsyth, A.J., et al., 2011. Direct current ripple compensation for multi-phase fault-tolerant machines. IET Electr. Power Appl., 5(1):28-36.

[3]Aliabad, A.D., Mirsalim, M., 2012. Analytic modeling and dynamic analysis of pole-changing line-start permanent-magnet motors. IET Electr. Power Appl., 6(3):149-155.

[4]Aliabad, A.D., Mirsalim, M., Ershad, N.F., 2010. Line-start permanent-magnet motors: significant improvements in starting torque, synchronization, and steady-state performance. IEEE Trans. Magn., 46(12):4066-4072.

[5]Barrero, F., Duran, M.J., 2016. Recent advances in the design, modeling and control of multiphase machines—part 1. IEEE Trans. Ind. Electron., 63(1):449-458.

[6]Deng, Y., Wang, Y.B., Teo, K.H., et al., 2016. A simplified space vector modulation scheme for multilevel converters. IEEE Trans. Power Electron., 31(3):1873-1886.

[7]Dujic, D., Jones, M., Levi, E., et al., 2011. Switching ripple characteristics of space vector PWM schemes for five-phase two-level voltage source inverters—Part 1: flux harmonic distortion factors. IEEE Trans. Ind. Electron., 58(7):2789-2798.

[8]Duran, M.J., Barrero, F., 2016. Recent advances in the design, modeling and control of multiphase machines—part 2. IEEE Trans. Ind. Electron., 63(1):459-468.

[9]Duran, M.J., Prieto, J., Barrero, F., 2013. Space vector PWM with reduced common-mode voltage for five-phase induction motor drives operating in over-modulation zone. IEEE Trans. Power Electron., 28(8):4030-4040.

[10]Ershad, N.F., Mirsalim, M., Aliabad, A.D., 2013. Line-start permanent magnet motors: proper design for pole-changing starting method. IET Electr. Power Appl., 7(6): 470-476.

[11]Gao, W.B., Wang, Y.F., Homaifa, A., 1995. Discrete-time variable structure control systems. IEEE Trans. Ind. Electron., 42(2):117-122.

[12]Ge, B.M., Sun, D.S., Wu, W.L., 2013. Winding design, modeling, and control for pole-phase modulation induction motors. IEEE Trans. Magn., 49(2):898-911.

[13]Gregor, R., Barrero, F., Toral, S.L., et al., 2010. Predictive space vector PWM current control method for asymmetrical dual three-phase induction motor drives. IET Electr. Power Appl., 4(1):26-34.

[14]Hoang, K.D., Ren, Y., Zhu, Z.Q., et al., 2015. Modified switching-table strategy for reduction of current harmonics in direct torque controlled dual-three-phase permanent magnet synchronous machine drives. IET Electr. Power Appl., 9(1):10-19.

[15]Jiang, S.Z., Chau, K.T., Chan, C.C., 2003. Spectral analysis of a new six-phase pole-changing induction motor drive for electric vehicles. IEEE Trans. Ind. Electron., 50(1):123-131.

[16]Jones, M., Satiawan, N.W., Bodo, N., et al., 2012. A dual five-phase space-vector modulation algorithm based on the decomposition method. IEEE Trans. Ind. Appl., 48(6): 2110-2120.

[17]Kelly, J.W., 2007. A Novel Control Scheme for a Pole-Changing Induction Motor Drive. PhD Thesis, Michigan State University, East Lansing, MI.

[18]Kelly, J.W., Strangas, E.G., 2007. Torque control during pole-changing transition of a 3:1 pole induction machine. Proc. Int. Conf. on Electrical Machines and Systems, p.1723-1728.

[19]Lee, J.D., Khoo, S., Wang, Z.B., 2013. DSP-based sliding-mode control for electromagnetic-levitation precise-position system. IEEE Trans. Ind. Inform., 9(2):817-827.

[20]Levi, E., 2008. Multiphase electric machines for variable-speed applications. IEEE Trans. Ind. Electron., 55(5): 1893-1909.

[21]Levi, E., 2016. Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Trans. Ind. Electron., 63(1):433-448.

[22]Levi, E., Bojoi, R., Profumo, F., et al., 2007. Multiphase induction motor drives—a technology status review. IET Electr. Power Appl., 1(4):489-516.

[23]Levi, E., Barrero, F., Duran, M.J., 2016. Multiphase machines and drives—revisited. IEEE Trans. Ind. Electron., 63(1): 429-432.

[24]Li, F.H., Chau, K.T., Liu, C.H., 2016. Pole-changing flux-weakening DC-excited dual-memory machines for electric vehicles. IEEE Trans. Energy Conv., 31(1):27-36.

[25]Lipo, T.A., 1994. Analysis of concentrated winding induction machines for adjustable speed drive applications— experimental results. IEEE Trans. Energy Conv., 9(4): 695-700.

[26]Lipo, T.A., White, J.C., 1991a. Analysis of a concentrated winding induction machine for adjustable speed drive applications: part 1 (motor analysis). IEEE Trans. Energy Conv., 6(4):679-683.

[27]Lipo, T.A., White, J.C., 1991b. Analysis of a concentrated winding induction machine for adjustable speed drive applications: part 2 (motor design and performance). IEEE Trans. Energy Conv., 6(4):684-692.

[28]Luis, S.I., 2014. Space phases theory and control of multiphase machines through their decoupling into equivalent three-phase machines. Electr. Eng., 96(1):79-94.

[29]Martin, J., Dujic, D., Levi, E., et al., 2011. Switching ripple characteristics of space vector PWM schemes for five-phase two-level voltage source inverters—part 2: current ripple. IEEE Trans. Ind. Electron., 58(7):2799-2808.

[30]Mengoni, M., Zarri, L., Gritli, Y., et al., 2015. Online detection of high-resistance connections in multiphase induction machines. IEEE Trans. Power Electron., 30(8):4505-4513.

[31]Osama, M., Lipo, T.A., 1997. Modeling and analysis of a wide-speed-range induction motor drive based on electrical pole changing. IEEE Trans. Ind. Appl., 33(5):1177-3184.

[32]Shi, L.W., Zhou, B., 2016. Analysis of a new five-phase fault-tolerant doubly salient brushless DC generator. IET Electr. Power Appl., 10(7):633-640.

[33]Subotic, I., Bodo, N., Levi, E., et al., 2016. Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics. IET Electr. Power Appl., 10(3):217-229.

[34]Tian, M.M., Wang, X.H., Li, G.Q., 2016. Line-start permanent magnet synchronous motor starting capability improvement using pole-changing method. 11th Conf. on Industrial Electronics and Applications, p.479-483.

[35]Tuan, D.M., Man, Z.H., Zhang, C.S., et al., 2013. Robust sliding mode learning control for uncertain discrete-time multi-input multi-output systems. IET Contr. Theory Appl., 8:1045-1053.

[36]Utkin, V.I., 1977. Variable structure systems with sliding modes. IEEE Trans. Autom. Contr., 22(2):212-222.

[37]Utkin, V.I., Guldner, J., Shi, J., 1999. Sliding Mode Control in Electromechanical Systems. Taylor & Francis, London.

[38]Wang, D., Lin, H.Y., Yang, H., et al., 2015. Design and analysis of a variable-flux pole-changing permanent magnet memory machine. IEEE Trans. Magn., 51(11):8113004.

[39]Wang, D., Lin, H.Y., Yang, H., et al., 2016a. Cogging torque optimization of flux memory pole-changing permanent magnet machine. IEEE Trans. Appl. Supercond., 26(4): 0603105.

[40]Wang, D., Lin, H.Y., Yang, H., et al., 2016b. Design and investigation of a fractional slot pole-changing memory machine. 11th Int. Conf. on Ecological Vehicles and Renewable Energies, p.1-7.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE