Full Text:   <867>

Summary:  <434>

CLC number: TP391.4

On-line Access: 2017-01-20

Received: 2016-12-20

Revision Accepted: 2016-12-22

Crosschecked: 2017-01-05

Cited: 2

Clicked: 2252

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fei Wu

http://orcid.org/0000-0003-2139-8807

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.1 P.97-106

http://doi.org/10.1631/FITEE.1601835


Disambiguating named entities with deep supervised learning via crowd labels


Author(s):  Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang

Affiliation(s):  Institute of Artificial Intelligence, College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   luckiezhou@zju.edu.cn, siliang@zju.edu.cn, junx@zju.edu.cn, wufei@zju.edu.cn, yzhuang@zju.edu.cn

Key Words:  Named entity disambiguation, Crowdsourcing, Deep learning


Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.

@article{title="Disambiguating named entities with deep supervised learning via crowd labels",
author="Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="1",
pages="97-106",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601835"
}

%0 Journal Article
%T Disambiguating named entities with deep supervised learning via crowd labels
%A Le-kui Zhou
%A Si-liang Tang
%A Jun Xiao
%A Fei Wu
%A Yue-ting Zhuang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 1
%P 97-106
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601835

TY - JOUR
T1 - Disambiguating named entities with deep supervised learning via crowd labels
A1 - Le-kui Zhou
A1 - Si-liang Tang
A1 - Jun Xiao
A1 - Fei Wu
A1 - Yue-ting Zhuang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 1
SP - 97
EP - 106
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601835


Abstract: 
named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the discriminative features in the manner of collaborative utilization of collective wisdom (via human-labeled crowd labels) and deep learning (via human-generated data) for the NED task. In particular, we devise a crowd model to elicit the underlying features (crowd features) from crowd labels that indicate a matching candidate for each mention, and then use the crowd features to fine-tune a dynamic convolutional neural network (DCNN). The learned DCNN is employed to obtain deep crowd features to enhance traditional hand-crafted features for the NED task. The proposed method substantially benefits from the utilization of crowd knowledge (via crowd labels) into a generic deep learning for the NED task. Experimental analysis demonstrates that the proposed approach is superior to the traditional hand-crafted features when enough crowd labels are gathered.

基于众包标签数据深度学习的命名实体消歧算法

概要:命名实体消歧主要研究如何将存在歧义的文本描述映射到其对应知识库(例如Wikipedia)中的实体。本文结合群体智能(即群体用户生成的标签)和深度学习(即数据驱动学习),提出了在命名实体消歧过程中生成区别度更高的特征方法。具体来说,通过设计一个众包模型,学习文本描述或实体所对应"众包特征",然后利用"众包特征"对动态卷积神经网络(Dynamic convolutional neural network, DCNN)进行优化,最后用优化得到的DCNN来提取"深度众包特征",以此来解决传统命名实体消歧算法中单独依赖手工设计特征的不足。本文所提出方法巧妙将群体认知(由众包标签反映)结合到命名实体消歧深度学习框架中。实验分析表明,当有足够多众包标签时,所提出方法优于传统手工设计特征。

关键词:命名实体消歧;众包计算;深度学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alhelbawy, A., Gaizauskas, R., 2014. Graph ranking for collective named entity disambiguation. Proc. 52nd Annual Meeting of the Association for Computational Linguistics, p.75-80.

[2]Bagga, A., Baldwin, B., 1998. Entity-based cross-document coreferencing using the vector space model. Proc. 36th Annual Meeting of the Association for Computational Linguistics and 17th Int. Conf. on Computational Linguistics, p.79-85.

[3]Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent Dirichlet allocation. J. Mach. Learn. Res., 3:993-1022.

[4]Bunescu, R., Paçca, M., 2006. Using encyclopedic knowledge for named entity disambiguation. Proc. 11th Conf. of the European Chapter of the Association for Computational Linguistics, p.3-7.

[5]Cucerzan, S., 2007. Large-scale named entity disambiguation based on Wikipedia data. Proc. Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, p.708-716.

[6]Demartini, G., Difallah, D.E., Cudré-Mauroux, P., 2012. ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. Proc. 21st Int. Conf. on World Wide Web, p.469-478.

[7]Gabrilovich, E., Markovitch, S., 2007. Computing semantic relatedness using Wikipedia-based explicit semantic analysis. Proc. Int. Joint Conf. on Artificial Intelligence, p.1606-1611.

[8]Gentile, A.L., Zhang, Z.Q., Xia, L., et al., 2009. Graph-based semantic relatedness for named entity disambiguation. Proc. Int. Conf. on Software, Services & Semantic Technologies, p.13-20.

[9]Haas, K., Mika, P., Tarjan, P., et al., 2011. Enhanced results for web search. Proc. 34th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.725-734.

[10]Hakimov, S., Oto, S.A., Dogdu, E., 2012. Named entity recognition and disambiguation using linked data and graph-based centrality scoring. Proc. 4th Int. Workshop on Semantic Web Information Management, Article 4.

[11]Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neur. Comput., 9(8):1735-1780.

[12]Kalchbrenner, N., Grefenstette, E., Blunsom, P., 2014. A convolutional neural network for modelling sentences. Proc. 52nd Annual Meeting of the Association for Computational Linguistics, p.655-665.

[13]Mikolov, T., Sutskever, I., Chen, K., et al., 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, p.3111-3119.

[14]Pan, Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409-413.

[15]Wu, F., Wang, Z.H., Zhang, Z.F., et al., 2015. Weakly semi-supervised deep learning for multi-label image annotation. IEEE Trans. Big Data, 1(3):109-122.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE