CLC number: TN92
On-line Access: 2018-05-07
Received: 2017-01-09
Revision Accepted: 2017-04-08
Crosschecked: 2018-03-15
Cited: 0
Clicked: 6804
Wei Yang, Jing Mao, Chen Chen, Xiang Cheng, Liu-qing Yang, Hai-ge Xiang. Resource allocation for physical-layer security in OFDMA downlink with imperfect CSI[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 398-408.
@article{title="Resource allocation for physical-layer security in OFDMA downlink with imperfect CSI",
author="Wei Yang, Jing Mao, Chen Chen, Xiang Cheng, Liu-qing Yang, Hai-ge Xiang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="3",
pages="398-408",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700026"
}
%0 Journal Article
%T Resource allocation for physical-layer security in OFDMA downlink with imperfect CSI
%A Wei Yang
%A Jing Mao
%A Chen Chen
%A Xiang Cheng
%A Liu-qing Yang
%A Hai-ge Xiang
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 3
%P 398-408
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700026
TY - JOUR
T1 - Resource allocation for physical-layer security in OFDMA downlink with imperfect CSI
A1 - Wei Yang
A1 - Jing Mao
A1 - Chen Chen
A1 - Xiang Cheng
A1 - Liu-qing Yang
A1 - Hai-ge Xiang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 3
SP - 398
EP - 408
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700026
Abstract: We investigate the problem of resource allocation in a downlink orthogonal frequency-division multiple access (OFDMA) broadband network with an eavesdropper under the condition that both legitimate users and the eavesdropper are with imperfect channel state information (CSI). We consider three kinds of imperfect CSI:(1) noise and channel estimation errors, (2) feedback delay and channel prediction, and (3) limited feedback channel capacity, where quantized CSI is studied using rate-distortion theory because it can be used to establish an information-theoretic lower bound on the capacity of the feedback channel. The problem is formulated as joint power and subcarrier allocation to optimize the maximum-minimum (max-min) fairness criterion over the users' secrecy rate. The problem considered is a mixed integer nonlinear programming problem. To reduce the complexity, we propose a two-step suboptimal algorithm that separately performs power and subcarrier allocation. For a given subcarrier assignment, optimal power allocation is achieved by developing an algorithm of polynomial computational complexity. Numerical results show that our proposed algorithm can approximate the optimal solution.
[1]Barros J, Rodrigues MRD, 2006. Secrecy capacity of wireless channels. IEEE Int Symp on Information Theory, p.356-360.
[2]Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, New York, USA.
[3]Chen C, Bai L, Wu B, emphet al., 2011. Downlink throughput maximization for OFMDA systems with feedback channel capacity constraints. IEEE Trans Signal Process, 59(1):441-446.
[4]Chen XM, Chen J, Zhang HZ, et al., 2016. On secrecy performance of multiantenna-jammer-aided secure communications with imperfect CSI. IEEE Trans Veh Technol, 65(10):8014-8024.
[5]Cheng X, Yang LQ, Shen X, 2015. D2D for intelligent transportation systems:a feasibility study. IEEE Trans Intell Transp Syst, 16(4):1784-1793.
[6]Cheong SKLY, Hellman ME, 1978. The Gaussian wire-tap channel. IEEE Trans Inform Theory, 24(4):451-456.
[7]Cover TM, Thomas JA, 2012. Elements of Information Theory. John Wiley & Sons.
[8]Csiszár I, Korner J, 1978. Broadcast channels with confidential messages. IEEE Trans Inform Theory, 24(3):339-348.
[9]Gradshteyn IS, Ryzhik IM, 2014. Table of Integrals, Series, and Products. Academic Press.
[10]Huang YZ, Al-Qahtani FS, Duong TQ, et al., 2015. Secure transmission in MIMO wiretap channels using general-order transmit antenna selection with outdated CSI. IEEE Trans Commun, 63(8):2959-2971.
[11]Huang YZ, Wang JL, Zhong CJ, et al., 2016. Secure transmission in cooperative relaying networks with multiple antennas. IEEE Trans Wirel Commun, 15(10):6843-6856.
[12]Jang J, Lee KB, 2003. Transmit power adaptation for multiuser OFMDA systems. IEEE J Sel Areas Commun, 21(2):171-178.
[13]Jorswieck EA, Wolf A, 2008. Resource allocation for the wire-tap multi-carrier broadcast channel. Proc Int Conf on Telecommunications, p.1-6.
[14]Karachontzitis S, Timotheou S, Krikidis I, et al., 2015. Security-aware max–min resource allocation in multiuser OFMDA downlink. IEEE Trans Inform Forens Secur, 10(3):529-542.
[15]Li Z, Yates R, Trappe W, 2006. Secrecy capacity of independent parallel channels. In:Liu RH, Trappe W (Eds.), Securing Wireless Communications at the Physical Layer. Springer, New York, p.1-18.
[16]Shen ZK, Andrews JG, Evans BL, 2005. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Trans Wirel Commun, 4(6):2726-2737.
[17]Song GC, Li Y, 2005. Cross-layer optimization for OFDM wireless networks–-part II:algorithm development. IEEE Trans Wirel Commun, 4(2):625-634.
[18]Wang C, Wang HM, 2015. Robust joint beamforming and jamming for secure AF networks:low-complexity design. IEEE Trans Veh Technol, 64(5):2192-2198.
[19]Wang HM, Wang C, Ng DWK, 2015. Artificial noise assisted secure transmission under training and feedback. IEEE Trans Signal Process, 63(23):6285-6298.
[20]Wang XW, Tao MX, Mo JH, et al., 2011. Power and subcarrier allocation for physical-layer security in OFMDA-based broadband wireless networks. IEEE Trans Inform Forens Secur, 6(3):693-702.
[21]Wong CY, Cheng RS, Letaief KB, et al., 1999. Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J Sel Areas Commun, 17(10):1747-1758.
[22]Wong IC, Evans BL, 2009. Optimal resource allocation in the OFMDA downlink with imperfect channel knowledge. IEEE Trans Commun, 57(1):232-241.
[23]Wu B, Chen C, Bai L, et al., 2010. Resource allocation for OFMDA systems with guaranteed outage probabilities. Proc 6th Int Wireless Communications and Mobile Computing Conf, p.731-735.
[24]Wu B, Bai L, Chen C, et al., 2011. Resource allocation for maximizing outage throughput in OFMDA systems with finite-rate feedback. EURASIP J Wirel Commun Netw, 2011:1-10.
[25]Wyner A, 1975. The wire-tap channel. Bell Syst Techn J, 54(8):1355-1387.
[26]Yang N, Yeoh PL, Elkashlan M, et al., 2013. Transmit antenna selection for security enhancement in MIMO wiretap channels. IEEE Trans Commun, 61(1):144-154.
[27]Zhang M, Liu Y, 2016. Energy harvesting for physical-layer security in OFDMA networks. IEEE Trans Inform Forens Secur, 11(1):154-162.
[28]Zhang M, Liu Y, Zhang R, 2016. Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Trans Wirel Commun, 15(4):3085-3096.
[29]Zhang RQ, Cheng X, Yang LQ, et al., 2015. Interference graph based resource allocation (InGRA) for D2D communications underlaying cellular networks. IEEE Trans Veh Technol, 64(8):3844-3850.
[30]Zhang RQ, Cheng X, Yang LQ, 2016. ICooperation via spectrum sharing for physical layer security in device-to-device communications underlaying cellular networks. IEEE Trans Wirel Commun, 15(8):5651-5663.
Open peer comments: Debate/Discuss/Question/Opinion
<1>