Full Text:   <379>

Summary:  <157>

CLC number: TN92

On-line Access: 2018-01-11

Received: 2017-01-10

Revision Accepted: 2017-04-02

Crosschecked: 2017-11-25

Cited: 0

Clicked: 1356

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shan Wang

http://orcid.org/0000-0002-2435-3260

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.11 P.1900-1912

10.1631/FITEE.1700030


Optimal signal design strategy with improper Gaussian signaling in the Z-interference channel


Author(s):  Dan Li, Shan Wang, Fang-lin Gu

Affiliation(s):  College of Electronic Science and Engineering, National University of Defence Technology, Changsha 410007, China

Corresponding email(s):   chinafir@nudt.edu.cn

Key Words:  Z-interference channel, Improper Gaussian signaling, Sum-rate, Pareto boundary, Covariance, Pseudo-covariance


Share this article to: More <<< Previous Article|

Dan Li, Shan Wang, Fang-lin Gu. Optimal signal design strategy with improper Gaussian signaling in the Z-interference channel[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1900-1912.

@article{title="Optimal signal design strategy with improper Gaussian signaling in the Z-interference channel",
author="Dan Li, Shan Wang, Fang-lin Gu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1900-1912",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700030"
}

%0 Journal Article
%T Optimal signal design strategy with improper Gaussian signaling in the Z-interference channel
%A Dan Li
%A Shan Wang
%A Fang-lin Gu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1900-1912
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700030

TY - JOUR
T1 - Optimal signal design strategy with improper Gaussian signaling in the Z-interference channel
A1 - Dan Li
A1 - Shan Wang
A1 - Fang-lin Gu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1900
EP - 1912
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700030


Abstract: 
We propose a thoroughly optimal signal design strategy to achieve the pareto boundary (boundary of the achievable rate region) with improper Gaussian signaling (IGS) on the z-interference channel (Z-IC) under the assumption that the interference is treated as additive Gaussian noise. Specifically, we show that the pareto boundary has two different schemes determined by the two paths manifesting the characteristic of improperly transmitted signals. In each scheme, we derive several concise closed-form expressions to calculate each user’s optimally transmitted power, covariance, and pseudo-covariance of improperly transmitted signals. The effectiveness of the proposed optimal signal design strategy is supported by simulations, and the results clearly show the superiority of IGS. The proposed optimal signal design strategy also provides a simple way to achieve the required rate region, with which we also derive a closed-form solution to quickly find the circularity coefficient that maximizes the sum rate. Finally, we provide an in-depth discussion of the structure of the pareto boundary, characterized by the channel coefficient, the degree of impropriety measured by the covariance, and the pseudo-covariance of signals transmitted by two users.

Z干扰信道下非正则信号的最佳设计策略

概要:本文提出一种用于在干扰被视为加性高斯噪声的假设下在Z干扰信道(z-interference channel, Z-IC)上实现非正则高斯信号(improper Gaussian signaling, IGS)的Pareto边界(可实现速率区域的边界)。具体来说,文章表明了帕累托边界可由某个用户的传输速率的两个区域表征,由传输信号的方差与伪协方差的两个变化路径决定。为每个用户发送的非正则信号的最优协方差和伪协方差设计推导出简明闭合的表达式。为此,我们通过仿真试验有力证明了所提出的最优信号设计策略的有效性,同时直观地展现出IGS较正则高斯信号(proper Gaussian signaling, PGS)的优越性。此外,我们提出的最优信号设计策略提供了实现所需速率区域的简单方法。利用该方法,我们得到了一个闭合形式的解决方案,用于快速确定最大和速率的信号设计方案。最后,我们深入讨论了帕累托边界的特征,定性分析了信道系数以及两个用户发送的信号的协方差和伪协方差与其的关系。

关键词:Z干扰信道;非正则信号;和速率;帕累托边界;协方差;伪协方差

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Agiwal, M., Roy, A., Saxena, N., 2016. Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor., 18(3):1617-1655.

[2]Cadambe, V.R., Jafar, S.A., 2008. Interference alignment and degrees of freedom of the K-user interference channel. IEEE Trans. Inform. Theor., 54(8):3425-3441.

[3]Cadambe, V.R., Jafar, S.A., Wang, C.W., 2010. Interference alignment with asymmetric complex signaling—settling the Høst-Madsen-Nosratinia conjecture. IEEE Trans. Inform. Theor., 56(9):4552-4565.

[4]Costa, M.H.M., 1985. On the Gaussian interference channel. IEEE Trans. Inform. Theor., 31(5):607-615.

[5]Hellings, C., Joham, M., Utschick, W., 2013. QoS feasibility in MIMO broadcast channels with widely linear transceivers. IEEE Signal Process. Lett., 20(11):1134-1137.

[6]Ho, Z.K.M., Jorswieck, E., 2012. Improper Gaussian signaling on the two-user SISO interference channel. IEEE Trans. Wirel. Commun., 11(9):3194-3203.

[7]Host-Madsen, A., Nosratinia, A., 2005. The multiplexing gain of wireless networks. Int. Symp. on Information Theory, p.2065-2069.

[8]Kim, C., Jeong, E.R., Sung, Y.C., et al., 2012. Asymmetric complex signaling for full-duplex decode-and-forward relay channels. Int. Conf. on Convergence, p.28-29.

[9]Kurniawan, E., Sun, S.M., 2015. Improper Gaussian signaling scheme for the Z-interference channel. IEEE Trans. Wirel. Commun., 14(7):3912-3923.

[10]Lagen, S., Agustin, A., Vidal, J., 2016. Coexisting linear and widely linear transceivers in the MIMO interference channel. IEEE Trans. Signal Process., 64(3):652-664.

[11]Lameiro, C., Santamaria, I., Schreier, P.J., 2017. Rate region boundary of the SISO Z-interference channel with improper signaling. IEEE Trans. Commun., 65(3):1022-1034.

[12]Motahari, A.S., Khandani, A.K., 2009. Capacity bounds for the Gaussian interference channel. IEEE Trans. Inform. Theor., 55(2):620-643.

[13]Neeser, F.D., Massey, J.L., 1993. Proper complex random processes with applications to information theory. IEEE Trans. Inform. Theor., 39(4):1293-1302.

[14]Sato, H., 1981. The capacity of the Gaussian interference channel under strong interference. IEEE Trans. Inform. Theor., 27(6):786-788.

[15]Telatar, E., 1999. Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun., 10(6):585-595.

[16]Zeng, Y., Yetis, C.M., Gunawan, E., et al., 2013a. Transmit optimization with improper Gaussian signaling for interference channels. IEEE Trans. Signal Process., 61(11):2899-2913.

[17]Zeng, Y., Zhang, R., Gunawan, E., et al., 2013b. Optimized transmission with improper Gaussian signaling in the K-user MISO interference channel. IEEE Trans. Wirel. Commun., 12(12):6303-6313.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE