CLC number: TP391.4
On-line Access: 2019-07-08
Received: 2017-10-08
Revision Accepted: 2018-09-28
Crosschecked: 2019-06-11
Cited: 0
Clicked: 6928
Wen-tao Shi, Qun-fei Zhang, Cheng-bing He, Jing Han. Taylor expansion MUSIC method for joint DOD and DOA estimation in a bistatic MIMO array[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(6): 842-848.
@article{title="Taylor expansion MUSIC method for joint DOD and DOA estimation in a bistatic MIMO array",
author="Wen-tao Shi, Qun-fei Zhang, Cheng-bing He, Jing Han",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="6",
pages="842-848",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700657"
}
%0 Journal Article
%T Taylor expansion MUSIC method for joint DOD and DOA estimation in a bistatic MIMO array
%A Wen-tao Shi
%A Qun-fei Zhang
%A Cheng-bing He
%A Jing Han
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 6
%P 842-848
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700657
TY - JOUR
T1 - Taylor expansion MUSIC method for joint DOD and DOA estimation in a bistatic MIMO array
A1 - Wen-tao Shi
A1 - Qun-fei Zhang
A1 - Cheng-bing He
A1 - Jing Han
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 6
SP - 842
EP - 848
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700657
Abstract: We propose a taylor expansion multiple signal classification (TE MUSIC) method for joint direction of departure (DOD) and direction of arrival (DOA) estimation in a bistatic multiple-input multiple-output (MIMO) array. First, using a taylor expansion of the steering vector, a two-dimensional (2D) search in the conventional MUSIC method for MIMO arrays is reduced to a two-step one-dimensional (1D) search in the proposed TE MUSIC method. Second, DOAs of the targets can be achieved via Lagrange multiplier by a 1D search. Finally, substituting the DOA estimates into the 2D MUSIC spectrum function, DODs of the targets are obtained by another 1D search. Thus, the DOD and DOA estimates can be automatically paired. The performance of the proposed method is better than that of the MIMO ESPRIT method, and is similar to that of the 2D MUSIC method. Furthermore, due to the 1D search, the TE MUSIC method avoids the high computational complexity of the 2D MUSIC method. Simulation results are presented to show the effectiveness of the proposed method.
[1]Ai Y, Yi W, Blum RS, et al., 2015. Cramer-Rao lower bound for multitarget localization with noncoherent statistical MIMO radar. Proc IEEE Radar Conf, p.1497-1502.
[2]Bekkerman I, Tabrikian J, 2006. Target detection and localization using MIMO radars and sonars. IEEE Trans Signal Proc, 54(10):3873-3883.
[3]Bencheikh ML, Wang Y, 2010. Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar. Electron Lett, 46(15):1081-1083.
[4]Bencheikh ML, Wang Y, He HY, 2010. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar. Signal Proc, 90(9):2723-2730.
[5]Cao RZ, Liu BY, Gao FF, et al., 2017. A low-complex one-snapshot DOA estimation algorithm with massive ULA. IEEE Commun Lett, 21(5):1071-1074.
[6]Chen DF, Chen BX, Qian GD, 2008. Angle estimation using ESPRIT in MIMO radar. Electron Lett, 44(12):770-771.
[7]Chen HW, Li X, Wang HQ, et al., 2014. Performance bounds of direction finding and its applications for multiple-input multiple-output radar. IET Radar Sonar Nav, 8(3):251-263.
[8]Chen JL, Gu H, Su WM, 2008. Angle estimation using ESPRIT without paring in MIMO radar. Electron Lett, 44(24):1422-1423.
[9]Chen JL, Gu H, Su WM, 2010. A new method for joint DOD and DOA estimation in bistatic MIMO radar. Signal Proc, 90(2):714-718.
[10]Fishler E, Haimovich A, Blum R, et al., 2004a. MIMO radar: an idea whose time has come. Proc IEEE Radar Conf, p.71-78.
[11]Fishler E, Haimovich A, Blum R, et al., 2004b. Performance of MIMO radar systems: advantages of angular diversity. Proc 38th Asilomar Conf on Signals, Systems and Computers, p.305-309.
[12]Fishler E, Haimovich A, Blum R, et al., 2006. Spatial diversity in radars–-models and detection performance. IEEE Trans Signal Proc, 54(3):823-838.
[13]Guo YD, Feng CQ, Zhang YS, et al., 2015. Joint DOD and DOA estimation for bistatic MIMO radar with combined array errors. Proc IET Int Radar Conf, p.1-5.
[14]Haimovich AM, Blum RS, Cimini LJ, 2008. MIMO radar with widely separated antennas. IEEE Signal Proc Mag, 25(1):116-129.
[15]Jiang H, Zhang JK, Wong KM, 2015. Joint DOD and DOA estimation for bistatic MIMO radar in unknown correlated noise. IEEE Trans Veh Technol, 64(11):5113-5125.
[16]Jin M, Liao GS, Li J, 2009. Joint DOD and DOA estimation for bistatic MIMO radar. Signal Proc, 89(2):244-251.
[17]Koupatsiaris DA, Karystinos GN, 2013. Efficient DOA, DOD, and target estimation for bistatic MIMO sonar. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.5155-5159.
[18]Li J, Stoica P, 2007. MIMO radar with colocated antennas. IEEE Signal Proc Mag, 24(5):106-114.
[19]Li J, Conan J, Pierre S, 2005. Joint estimation of channel parameter for MIMO communication systems. Proc 2nd Int Symp on Wireless Communication Systems, p.22-26.
[20]Li JF, Zhang XF, 2014. Unitary subspace-based method for angle estimation in bistatic MIMO radar. Circ Syst Signal Proc, 33(2):501-513.
[21]Robey FC, Coutts S, Weikle D, et al., 2004. MIMO radar theory and experimental results. Proc 38th Asilomar Conf on Signals, Systems and Computers, p.300-304.
[22]Sharify S, Nayebi MM, 2017. Approach to detector design for statistical multiple-input–multiple-output radars using multi-scan data. IET Radar Sonar Nav, 11(4):664-672.
[23]Tang B, Tang J, Zhang Y, et al., 2013. Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar. Signal Proc, 93(5):1349-1357.
[24]Xu BQ, Zhao YB, Cheng ZF, et al., 2017. A novel unitary PARAFAC method for DOD and DOA estimation in bistatic MIMO radar. Signal Proc, 138:273-279.
[25]Xu LZ, Li J, Stoica P, 2008. Target detection and parameter estimation for MIMO radar systems. IEEE Trans Aerosp Electron Syst, 44(3):927-939.
[26]Yan HD, Liao GS, Li J, 2008. Multitarget identification and localization using bistatic MIMO radar systems. EURASIP J Adv Signal Proc, Article 283483.
[27]Yeo K, Chung Y, Yang H, et al., 2017. Reduced-dimension DOD and DOA estimation through projection filtering in bistatic MIMO radar with jammer discrimination. IET Radar Sonar Nav, 11(8):1228-1234.
[28]Zhang SN, Zhu XH, 2013. Improved design of unimodular waveforms for MIMO radar. Multidim Syst Signal Proc, 24(3):447-456.
[29]Zhang X, Xu D, 2010. Angle estimation in MIMO radar using reduced-dimension Capon. Electron Lett, 46(12):860-861.
[30]Zheng GM, Chen BX, 2015. Unitary dual-resolution ESPRIT for joint DOD and DOA estimation in bistatic MIMO radar. Multidim Syst Signal Proc, 26(1):159-178.
[31]Zheng GM, Tang J, Yang X, 2016. ESPRIT and unitary ESPRIT algorithms for coexistence of circular and noncircular signals in bistatic MIMO radar. IEEE Access, 4:7232-7240.
Open peer comments: Debate/Discuss/Question/Opinion
<1>