Full Text:   <2445>

Summary:  <1800>

CLC number: TN919.8

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-08-09

Cited: 0

Clicked: 5952

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Rong-xin Zhang

http://orcid.org/0000-0002-0664-294X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.8 P.984-998

http://doi.org/10.1631/FITEE.1700767


Underwater video transceiver designs based on channel state information and video content


Author(s):  Rong-xin Zhang, Xiao-li Ma, De-qing Wang, Fei Yuan, En Cheng

Affiliation(s):  MOE Key Laboratory of Underwater Acoustic Communication and Marine Information Technology, Xiamen University, Xiamen 361005, China; more

Corresponding email(s):   xiaoli@gatech.edu

Key Words:  Underwater video transmission, Transceiver design, Imperfect channel state information


Rong-xin Zhang, Xiao-li Ma, De-qing Wang, Fei Yuan, En Cheng. Underwater video transceiver designs based on channel state information and video content[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(8): 984-998.

@article{title="Underwater video transceiver designs based on channel state information and video content",
author="Rong-xin Zhang, Xiao-li Ma, De-qing Wang, Fei Yuan, En Cheng",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="8",
pages="984-998",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700767"
}

%0 Journal Article
%T Underwater video transceiver designs based on channel state information and video content
%A Rong-xin Zhang
%A Xiao-li Ma
%A De-qing Wang
%A Fei Yuan
%A En Cheng
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 8
%P 984-998
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700767

TY - JOUR
T1 - Underwater video transceiver designs based on channel state information and video content
A1 - Rong-xin Zhang
A1 - Xiao-li Ma
A1 - De-qing Wang
A1 - Fei Yuan
A1 - En Cheng
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 8
SP - 984
EP - 998
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700767


Abstract: 
Underwater hostile channel conditions challenge video transmission designs. The current designs often treat video coding and transmission schemes as individual modules. In this study, we develop an adaptive transceiver with channel state information (CSI) by taking into account the importance of video components and channel conditions. The design is more effective than the traditional ones. However, in practical systems, perfect CSI may not be available. Therefore, we compare the imperfect CSI case with existing schemes, and validate the effectiveness of our design through simulations and measured channels in terms of a better peak signal-to-noise ratio and a higher video structural similarity index.

基于信道状态信息与视频内容的水下视频收发机设计

概要:水下复杂多变的信道条件给视频传输的设计带来了很大挑战。目前方案通常将视频编码与数据传输视为两个单独模块。提出一种自适应视频收发方案。该方案兼顾视频组件重要性以及信道条件,获得比传统方案更好的传输性能。然而在现实中,通常无法获得理想的信道状态信息。因此,对该方案与已知方案在不完全信道状态信息下进行相应性能比较。仿真数据与实验数据显示,该方案具有更高峰值信噪比以及更高视频结构相似指数。

关键词:水下视频传输;收发器设计;不完全信道状态信息

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Berger CR, Zhou S, Preisig JC, et al., 2010. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans Signal Process, 58(3):1708-1721.

[2]Choudhury PN, Sivakumar K, 2017. Trace inequalities for positive semidefinite matrices. Discuss Math Gener Algebra Appl, 37(1):93-94.

[3]Cover TM, Thomas JA, 2006. Elements of Information Theory (2nd Ed). Wiley-Interscience, New York, USA.

[4]Fan B, Wang W, Wu W, et al., 2010. Joint subcarrier and power allocation for uplink relay-enhanced OFDM systems. Int J Commun Syst, 23(11):1366-1381.

[5]Gong M, Zhang C, Lu J, et al., 2008. Dynamic resource allocation in high speed mobile OFDMA system. IEEE Int Conf on Communications, p.3335-3339.

[6]Gupta AK, Nagar DK, 1999. Matrix Variate Distributions. In: Brezis H, Douglas RG, Jeffrey A (Eds.). Chapman and Hall/CRC Press, London, UK.

[7]Hoag DF, Ingle VK, Gaudette RJ, 1997. Low-bit-rate coding of underwater video using wavelet-based compression algorithms. IEEE J Ocean Eng, 22(2):393-400.

[8]Holla S, Geetha K, 2015. Distributed video coding for underwater acoustic channels. IEEE Int Conf on Computer Graphics, Vision and Information Security, p.77-82.

[9]Hu X, Wang D, Lin Y, et al., 2016. Multi-channel time frequency shift keying in underwater acoustic communication. Appl Acoust, 103:54-63.

[10]Jafar SA, Vishwanath S, Goldsmith A, 2001. Channel capacity and beamforming for multiple transmit and receive antennas with covariance feedback. IEEE Int Conf on Communications, p.2266-2270.

[11]Jakubczak S, Katabi D, 2010. SoftCast: one-size-fits-all wireless video. ACM SIGCOMM Comput Commun Rev, 40(4):449-450.

[12]Kuai X, Sun H, Zhou S, et al., 2016. Impulsive noise mitigation in underwater acoustic OFDM systems. IEEE Trans Veh Technol, 65(10):8190-8202.

[13]Kumar P, Kumar P, 2016. Performance evaluation of π/4-DQPSK OFDM over underwater acoustic channels. Wirel Pers Commun, 91(3):1137-1152.

[14]Li B, Zhou S, Huang J, et al., 2008a. Scalable OFDM design for underwater acoustic communications. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.5304-5307.

[15]Li B, Zhou S, Stojanovic M, et al., 2008b. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE J Ocean Eng, 33(2):198-209.

[16]Li Q, Wang B, Wang W, et al., 2009. An efficient underwater video compression algorithm for underwater acoustic channel transmission. WRI Int Conf on Communications and Mobile Computing, p.211-215.

[17]Lienart T, 2015. Matrix Inversion Lemmas. https://www.stats.ox.ac.uk/%7Elienart/ blog_linalg_invlemmas.html

[18]Molisch AF, 2012. Wireless Communications (2nd Ed). John Wiley & Sons.

[19]Negahdaripour S, Khamene A, 2000. Motion-based compression of underwater video imagery for the operations of unmanned submersible vehicles. Comput Vis Image Underst, 79(1):162-183.

[20]Ramagiri VK, Jagannatham AK, 2015. Optimal joint OFDM subcarrier, rate and power allocation for video quality maximization in multihop wireless sensor networks. 10th Int Conf on Information, Communications and Signal Processing, p.1-5.

[21]Ribas J, Sura D, Stojanovic M, 2011. Underwater wireless video transmission for supervisory control and inspection using acoustic OFDM. OCEANS, p.1-9.

[22]Ribas-Corbera J, Neuhoff DL, 2001. Optimizing motion-vector accuracy in block-based video coding. IEEE Trans Circ Syst Video Technol, 11(4):497-511.

[23]Santoso TB, Wirawan I, Hendrantoro G, 2012. Image transmission with OFDM technique in underwater acoustic environment. IEEE 7th Int Conf on Telecommunication Systems, Services, and Applications, p.37-41.

[24]Scaglione A, Giannakis GB, Barbarossa S, 1999. Redundant filterbank precoders and equalizers I: unification and optimal designs. IEEE Trans Signal Process, 47(7):1988-2006.

[25]Scaglione A, Stoica P, Barbarossa S, et al., 2002. Optimal designs for space-time linear precoders and decoders. IEEE Trans Signal Process, 50(5):1051-1064.

[26]Stojanovic M, 2006. Low complexity OFDM detector for underwater acoustic channels. OCEANS, p.1-6.

[27]Stojanovic M, Preisig J, 2009. Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun Mag, 47(1):84-89.

[28]Uma B, Geetha K, Prasanna Kumar S, et al., 2014. Simulation of H.264 based real time video encoder for underwater acoustic channel. Int J Curr Eng Technol, 4(3):1715-1718.

[29]Vall LD, Sura D, Stojanovic M, 2011. Towards underwater video transmission. 6th ACM Int Workshop on Underwater Networks, p.1-5.

[30]Vu HN, Kong HY, 2012. Joint subcarrier matching and power allocation in OFDM two-way relay systems. J Commun Netw, 14(3):257-266.

[31]Wang C, Wang Z, Nooshabadi S, 2014. Signal alignment for secure underwater coordinated multipoint transmissions. IEEE Conf on Communications and Network Security, p.145-150.

[32]Wang H, Cai W, Yang J, et al., 2015. Design of HD video surveillance system for deep-sea biological exploration. IEEE 16th Int Conf on Communication Technology, p.908-911.

[33]Wang W, Yang S, Gao L, 2008. Comparison of schemes for joint subcarrier matching and power allocation in OFDM decode-and-forward relay system. IEEE Int Conf on Communications, p.4983-4987.

[34]Wang Z, Lu L, Bovik AC, 2004. Video quality assessment based on structural distortion measurement. Signal Process Image Commun, 19(2):121-132.

[35]Zhang R, Kong Y, Ma X, et al., 2018. Adaptive video transmission designs over underwater acoustic channels. Int Conf on Computing, Networking, and Communication, p.1-5.

[36]Zhang Y, Negahdaripour S, Li Q, 2016a. Error-resilient coding for underwater video transmission. MTS/IEEE OCEANS Monterey, p.1-7.

[37]Zhang Y, Negahdaripour S, Li Q, 2016b. Low bit-rate compression of underwater imagery based on adaptive hybrid wavelets and directional filter banks. Signal Process Image Commun, 47:96-114.

[38]Zhang Z, Liu D, Ma X, et al., 2017. ECast: an enhanced video transmission design for wireless multicast systems over fading channels. IEEE Syst J, 11(4):2566-2577.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE