Full Text:   <231>

Summary:  <132>

CLC number: O436.4

On-line Access: 2019-05-14

Received: 2018-06-28

Revision Accepted: 2018-11-16

Crosschecked: 2019-04-11

Cited: 0

Clicked: 903

Citations:  Bibtex RefMan EndNote GB/T7714


Xing-jun Wang


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.4 P.458-471


Graphene-based silicon modulators

Author(s):  Hao-wen Shu, Ming Jin, Yuan-sheng Tao, Xing-jun Wang

Affiliation(s):  State Key Laboratory on Advanced Optical Communication Systems and Networks, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China; more

Corresponding email(s):   haowenshu@pku.edu.cn, mjin@pku.edu.cn, ystao@pku.edu.cn, xjwang@pku.edu.cn

Key Words:  Silicon photonics, Graphene, Optical modulator

Hao-wen Shu, Ming Jin, Yuan-sheng Tao, Xing-jun Wang. Graphene-based silicon modulators[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 458-471.

@article{title="Graphene-based silicon modulators",
author="Hao-wen Shu, Ming Jin, Yuan-sheng Tao, Xing-jun Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Graphene-based silicon modulators
%A Hao-wen Shu
%A Ming Jin
%A Yuan-sheng Tao
%A Xing-jun Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 458-471
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800407

T1 - Graphene-based silicon modulators
A1 - Hao-wen Shu
A1 - Ming Jin
A1 - Yuan-sheng Tao
A1 - Xing-jun Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 458
EP - 471
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800407

silicon photonics is a promising technology to address the demand for dense and integrated next-generation optical interconnections due to its complementary-metal-oxide-semiconductor (CMOS) compatibility. However, one of the key building blocks, the silicon modulator, suffers from several drawbacks, including a limited bandwidth, a relatively large footprint, and high power consumption. The graphene-based silicon modulator, which benefits from the excellent optical properties of the two-dimensional graphene material with its unique band structure, has significantly advanced the above critical figures of merit. In this work, we review the state-of-the-art graphene-based silicon modulators operating in various mechanisms, i.e., thermal-optical, electro-optical, and plasmonic. It is shown that graphene-based silicon modulators possess the potential to have satisfactory characteristics in intra- and inter-chip connections.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Andersen DR, 2010. Graphene-based long-wave infrared TM surface plasmon modulator. J Opt Soc Am B, 27(4):818-823.

[2]Ansell D, Radko IP, Han Z, et al., 2015. Hybrid graphene plasmonic waveguide modulators. Nat Commun, 6:8846.

[3]Balandin AA, Ghosh S, Bao WZ, et al., 2008. Superior thermal conductivity of single-layer graphene. Nano Lett, 8(3):902-907.

[4]Chen L, Doerr CR, Dong P, et al., 2011. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt Expr, 19(26):B946-B951.

[5]Chen L, Dong P, Chen YK, 2012. Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s. IEEE Photon Technol Lett, 24(11):936-938.

[6]Chen X, Wang Y, Xiang YJ, et al., 2016. A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J Lightw Technol, 34(21):4948-4953.

[7]Cocorullo G, Rendina I, 1992. Thermo-optical modulation at 1.5$upmu$m in silicon etalon. Electron Lett, 28(1):83-85.

[8]Dalir H, Xia Y, Wang Y, et al., 2016. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photon, 3(9):1564-1568.

[9]Das S, Salandrino A, Wu JZ, et al., 2015. Near-infrared electro-optic modulator based on plasmonic graphene. Opt Lett, 40(7):1516-1519.

[10]Ding Y, Zhu X, Xiao SS, et al., 2015. Effective electro- optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett, 15(7):4393-4400.

[11]Ding Y, Guan X, Zhu X, et al., 2017. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 9(40):15576-15581.

[12]Dionne JA, Diest K, Sweatlock LA, et al., 2009. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett, 9(2):897-902.

[13]Gan S, Cheng CT, Zhan YH, et al., 2015. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 7(47):20249-20255.

[14]Gao Y, Zhou W, Sun XK, et al., 2017. Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si$_3$N$_4$ ring resonator. Opt Lett, 42(10):1950-1953.

[15]Gosciniak J, Tan DTH, 2013a. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology, 24(18):185202.

[16]Gosciniak J, Tan DTH, 2013b. Theoretical investigation of graphene-based photonic modulators. Sci Rep, 3:1897.

[17]Haffner C, Heni W, Fedoryshyn Y, et al., 2015. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photon, 9(8):525-528.

[18]Hanson GW, 2008. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys, 103(6):064302.

[19]Hu X, Wang J, 2017. High figure of merit graphene modulator based on long-range hybrid plasmonic slot wave-guide. IEEE J Quant Electron, 53(3):7200308.

[20]Jones R, Liao L, Liu AS, et al., 2004. Optical characterization of 1-GHz silicon-based optical modulator. Proc SPIE, 5451:8-15.

[21]Kim JT, Chung KH, Choi CG, 2013. Thermo-optic mode extinction modulator based on graphene plasmonic wave-guide. Opt Expr, 21(13):15280-15286.

[22]Koeber S, Palmer R, Lauermann M, et al., 2015. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci Appl, 4(2):e255.

[23]Lao J, Tao J, Wang QJ, et al., 2014. Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photon Rev, 8(4):569-574.

[24]Li TT, Zhang JL, Yi HX, et al., 2013. Low-voltage, high speed, compact silicon modulator for BPSK modulation. Opt Expr, 21(20):23410-23415.

[25]Li W, Chen BG, Meng C, et al., 2014. Ultrafast all-optical graphene modulator. Nano Lett, 14(2):955-959.

[26]Li ZQ, Henriksen EA, Jiang Z, et al., 2008. Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys, 4(7):532-535.

[27]Li ZY, Yu NF, 2013. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl Phys Lett, 102(13):131108.

[28]Liu AS, Jones R, Liao L, et al., 2004. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 427(6975):615-618.

[29]Liu M, Yin XB, Ulin-Avila E, et al., 2011. A graphene-based broadband optical modulator. Nature, 474(7349):64-67.

[30]Liu M, Yin XB, Zhang X, 2012. Double-layer graphene optical modulator. Nano Lett, 12(3):1482-1485.

[31]Liu WJ, Asheghi M, 2005. Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J Appl Phys, 98(12):123523.

[32]Miller DAB, 2009. Device requirements for optical interconnects to silicon chips. Proc IEEE, 97(7):1166-1185.

[33]Miller DAB, 2012. Energy consumption in optical modulators for interconnects. Opt Expr, 20(S2):A293-A308.

[34]Mohsin M, Schall D, Otto M, et al., 2014. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt Expr, 22(12):15292-15297.

[35]Mohsin M, Neumaier D, Schall D, et al., 2015. Experimental verification of electro-refractive phase modulation in graphene. Sci Rep, 5:10967.

[36]Novoselov KS, Geim AK, Morozov SV, et al., 2004. Electric field effect in atomically thin carbon films. Science, 306(5696):666-669.

[37]Ono M, Hata M, Tsunekawa M, et al., 2018. Ultrafast and energy-efficient all-optical modulator based on deep-subwavelength graphene-loaded plasmonic waveguides. Conf on Lasers and Electro-Optics, Article FF2L.4.

[38]Phare CT, Lee YHD, Cardenas J, et al., 2015. Graphene electro-optic modulator with 30hspace{0.25em}GHz bandwidth. Nat Photon, 9(8):511-514.

[39]Phatak A, Cheng ZZ, Qin CY, et al., 2016. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt Lett, 41(11):2501-2504.

[40]Pop E, Varshney V, Roy AK, 2012. Thermal properties of graphene: fundamentals and applications. MRS Bull, 37(12):1273-1281.

[41]Qiu CY, Gao WL, Vajtai R, et al., 2014. Efficient modulation of 1.55 $upmu$m radiation with gated graphene on a silicon microring resonator. Nano Lett, 14(12):6811-6815.

[42]Qiu CY, Yang YX, Li C, et al., 2017. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep, 7(1):17046.

[43]Reed GT, Mashanovich G, Gardes FY, et al., 2010. Silicon optical modulators. Nat Photon, 4(8):518-526.

[44]Shi Z, Gan L, Xiao TH, et al., 2015. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photon, 2(11):1513-1518.

[45]Shin JS, Kim JT, 2015. Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic wave-guide. Nanotechnology, 26(36):365201.

[46]Shu HW, Tao YS, Jin M, et al., 2018a. A real-time tunable arbitrary power ratios graphene based power divider. Sci China Inform Sci, 61(8):080408.

[47]Shu HW, Su ZT, Huang L, et al., 2018b. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci Rep, 8(1):991.

[48]Soref R, Larenzo J, 1986. All-silicon active and passive guided-wave components for λ=1.3 and 1.6 µm. IEEE J Quant Electron, 22(6):873-879.

[49]Sorianello V, Midrio M, Romagnoli M, 2015. Design optimization of single and double layer graphene phase modulators in SOI. Opt Expr, 23(5):6478-6490.

[50]Sorianello V, de Angelis G, Cassese T, et al., 2016. Complex effective index in graphene-silicon waveguides. Opt Expr, 24(26):29984-29993.

[51]Sorianello V, Midrio M, Contestabile G, et al., 2018. Graphene-silicon phase modulators with gigahertz bandwidth. Nat Photon, 12(1):40-44.

[52]Thomson D, Zilkie A, Bowers JE, et al., 2016. Roadmap on silicon photonics. J Opt, 18(7):073003.

[53]Wang F, Zhang YB, Tian CS, et al., 2008. Gate-variable optical transitions in graphene. Science, 320(5873):206-209.

[54]Xiao TH, Cheng ZZ, Goda K, 2017. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits. Nanotechnology, 28(24):245201.

[55]Xu C, Jin YC, Yang LZ, et al., 2012. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt Expr, 20(20):22398-22405.

[56]Xu F, Das S, Gong Y, et al., 2015. Complex refractive index tunability of graphene at 1550hspace{0.167em}nm wavelength. Appl Phys Lett, 106(3):031109.

[57]Xu ZZ, Qiu CY, Yang YX, et al., 2017. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt Expr, 25(16):19479-19486.

[58]Yamane T, Nagai N, Katayama SI, et al., 2002. Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J Appl Phys, 91(12):9772.

[59]Yan HG, Li XS, Chandra B, et al., 2012. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol, 7(5):330-334.

[60]Yan SQ, Zhu XL, Frandsen LH, et al., 2017. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun, 8:14411.

[61]Ye SW, Yuan F, Zou XH, et al., 2017. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J Sel Top Quant Electron, 23(1):3400105.

[62]Yin YL, Li J, Xu Y, et al., 2018. Silicon-graphene photonic devices. J Semicond, 39(6):061009.

[63]Yu LH, Dai DX, He SL, 2014. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl Phys Lett, 105(25):251104.

[64]Yu LH, Yin YL, Shi YC, et al., 2016. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3(2):159-166.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE