Full Text:   <1943>

Summary:  <1513>

CLC number: TP242

On-line Access: 2019-04-09

Received: 2018-09-27

Revision Accepted: 2019-02-22

Crosschecked: 2019-03-14

Cited: 0

Clicked: 6915

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jung Kim

https://orcid.org/0000-0002-1825-6325

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.3 P.342-352

http://doi.org/10.1631/FITEE.1800601


Recognition of walking environments and gait period by surface electromyography


Author(s):  Seulki Kyeong, Wonseok Shin, Minjin Yang, Ung Heo, Ji-rou Feng, Jung Kim

Affiliation(s):  Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea

Corresponding email(s):   jungkim@kaist.ac.kr

Key Words:  Walking environment, Gait Period, Surface electromyography (sEMG), Exoskeleton


Seulki Kyeong, Wonseok Shin, Minjin Yang, Ung Heo, Ji-rou Feng, Jung Kim. Recognition of walking environments and gait period by surface electromyography[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(3): 342-352.

@article{title="Recognition of walking environments and gait period by surface electromyography",
author="Seulki Kyeong, Wonseok Shin, Minjin Yang, Ung Heo, Ji-rou Feng, Jung Kim",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="3",
pages="342-352",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800601"
}

%0 Journal Article
%T Recognition of walking environments and gait period by surface electromyography
%A Seulki Kyeong
%A Wonseok Shin
%A Minjin Yang
%A Ung Heo
%A Ji-rou Feng
%A Jung Kim
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 3
%P 342-352
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800601

TY - JOUR
T1 - Recognition of walking environments and gait period by surface electromyography
A1 - Seulki Kyeong
A1 - Wonseok Shin
A1 - Minjin Yang
A1 - Ung Heo
A1 - Ji-rou Feng
A1 - Jung Kim
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 3
SP - 342
EP - 352
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800601


Abstract: 
Recognizing and predicting the movement and intention of the wearer in control of an exoskeleton robot is very challenging. It is difficult for exoskeleton robots, which measure and drive human movements, to interact with humans. Therefore, many different types of sensors are needed. When using various sensors, a data design is needed for effective sensing. An electromyographic (EMG) signal can be used to identify intended motion before the actual movement, and the delay time can be shortened via control of the exoskeleton robot. Before using a lower limb exoskeleton to help in walking, the aim of this work is to distinguish the walking environment and gait Period using various sensors, including the surface electromyography (sEMG) sensor. For this purpose, a gait experiment was performed on four subjects using the ground reaction force, human–robot interaction force, and position sensors with sEMG sensors. The purpose of this paper is to show progress with the use of sEMG when recognizing walking environments and the gait Period with other sensors. For effective data design, we used a combination of sensor types, sEMG sensor locations, and sEMG features. The results obtained using an individual mechanical sensor together with sEMG showed improvement compared to the case of using an individual sensor, and the combination of sEMG and position information showed the best performance in the same number of combinations of three sensors. When four sensor combinations were used, the environment classification accuracy was 96.1% and the gait Period classification accuracy was 97.8%. Vastus medialis (VM) and gastrocnemius (GAS) were the most effective combinations of two muscle types among the five sEMG sensor locations on the legs, and the results were 74.4% in pre-heel contact (preHC) and 71.7% in pre-toe-off (preTO) for environment classification, and 68.0%for gait Period classification, when using only the sEMG sensor. The two effective sEMG feature combinations were “mean absolute value (MAV), zero crossings (ZC)” and “MAV, waveform length (WL)”, and the “MAV, ZC” results were 80.0% 77.1%, and 75.5%. These results suggest that the sEMG signal can be effectively used to control an exoskeleton robot.

基于表面肌电信号的行走环境与步态周期识别

摘要:在外骨骼机器人控制研究中,识别及预测操作者运动意图是一项很大挑战。外骨骼机器人是一种检测和驱动人体运动的机械动力装置,因其复杂的人机交互技术,需要使用很多不同类型传感器。当使用各种传感器时,需要选择数据类型以进行有效传感。肌电信号能在实际运动做出之前识别预期动作,并且可以缩短外骨骼机器人控制中的时间延迟。为应用下肢外骨骼帮助行走,本文工作旨在使用不同类型传感器(包括表面肌电信号传感器)识别行走环境和区分步态周期。为此,将地面反作用力、人机相互作用力、位置传感器和表面肌电信号传感器相结合,对4个受试者进行步态实验。本文展示了在行走环境与步态周期的识别中使用表面肌电信号及其他类型传感器的实验成果。选择不同传感器类型组合、表面肌电信号传感器不同位置组合以及表面肌电信号不同特征值组合,作为有效数据类型。实验结果表明,与使用单个力学传感器相比,将表面肌电信号传感器与其结合使用,可使识别结果得到很大改善。此外,在3种不同类型传感器的不同组合中,使用表面肌电信号与位置传感器信息的组合得出最高分类准确率。当使用全部4种类型传感器时,行走环境与步态周期分类准确率分别为96.1%与97.8%。在腿部5个表面肌电传感器不同位置组合里,股内侧肌和腓肠肌组合是最有效的2种肌肉类型组合。当仅使用表面肌电信号进行分类时,该组合在行走环境识别实验中,足跟接地前与足趾离地前的情况下,分类准确率分别为74.4%与71.7%;步态周期分类准确率为68%。两组有效的表面肌电信号特征值组合分别是"平均绝对值、过零点数"与"平均绝对值、波形长度"。"平均绝对值、过零点书"特征组合在行走环境识别实验中,在足跟接地前与足趾离地前情况下,分类准确率分别为80%与77.1%;步态周期分类准确率为75.5%。上述结果表明,表面肌电信号可有效用于控制外骨骼机器人。

关键词:行走环境;步态周期;表面肌电信号;外骨骼

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cifrek M, Medved V, Tonković S, et al., 2009. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech, 24(4):327-340.

[2]Colombo G, Joerg M, Schreier R, et al., 2000. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev, 37(6):693-700.

[3]Dotov DG, Bardy BG, Dalla Bella S, 2016. The role of environmental constraints in walking: effects of steering and sharp turns on gait dynamics. Sci Rep, 6:28374.

[4]Du L, Zhang F, Liu M, et al., 2012. Toward design of an environment-aware adaptive locomotion-mode-recogni- tion system. IEEE Trans Biomed Eng, 59(10): 2716-2725.

[5]Esquenazi A, Talaty M, Packel A, et al., 2012. The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil, 91(11):911-921.

[6]Farrell MT, 2013. Pattern Classification of Terrain during Amputee Walking. PhD Thesis, Massachusetts Institute of Technology, Massachusetts, USA.

[7]Goršič M, Kamnik R, Ambrožič L, et al., 2014. Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors, 14(2):2776-2794.

[8]Guizzo E, Goldstein H, 2005. The rise of the body bots [robotic exoskeletons]. IEEE Spectr, 42(10):50-56.

[9]Gupta R, Agarwal R, 2018. Continuous human locomotion identification for lower limb prosthesis control. CSI Trans ICT, 6(1):17-31.

[10]Huang H, Kuiken TA, Lipschutz RD, 2009. A strategy for identifying locomotion modes using surface electromyo- graphy. IEEE Trans Biomed Eng, 56(1):65-73.

[11]Huang H, Zhang F, Hargrove LJ, et al., 2011. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans Biomed Eng, 58(10):2867-2875.

[12]Jin DW, Yang JK, Zhang RH, et al., 2006. Terrain identification for prosthetic knees based on electromyo- graphic signal features. Tsinghua Sci Technol, 11(1): 74-79.

[13]Jung JY, Heo W, Yang H, et al., 2015. A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots. Sensors, 15(11): 27738-27759.

[14]Kawamoto H, Lee S, Kanbe S, et al., 2003. Power assist method for HAL-3 using EMG-based feedback controller. Proc IEEE Int Conf on Systems, Man and Cybernetics, p.1648-1653.

[15]Kim H, Shin YJ, Kim J, 2017a. Kinematic-based locomotion mode recognition for power augmentation exoskeleton. Int J Adv Rob Syst, 14(5):1-14.

[16]Kim H, Shin YJ, Kim J, 2017b. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics, 46:32-45.

[17]Kong K, Tomizuka M, 2009. A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE/ASME Trans Mechatron, 14(3):358-370.

[18]Lawson BE, Varol HA, Huff A, et al., 2013. Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Trans Neur Syst Rehabil Eng, 21(3): 466-473.

[19]Lenzi T, de Rossi SMM, Vitiello N, et al., 2012. Intention- based EMG control for powered exoskeletons. IEEE Trans Biomed Eng, 59(8):2180-2190.

[20]Lenzi T, Carrozza MC, Agrawal SK, 2013. Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans Neur Syst Rehabil Eng, 21(6):938-948.

[21]Lewis CL, Ferris DP, 2011. Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech, 44(5):789-793.

[22]Long Y, Du ZJ, Wang WD, et al., 2016. PSO-SVM-based online locomotion mode identification for rehabilitation robotic exoskeletons. Sensors, 16(9):1-20.

[23]Martinez-Hernandez U, Rubio-Solis A, Dehghani-Sanij AA, 2018. Recognition of walking activity and prediction of gait periods with a CNN and first-order MC strategy. 7th IEEE Int Conf on Biomedical Robotics and Biomechatronics, p.897-902.

[24]Neumann DA, 2002. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Mosby, Inc., St. Louis, USA.

[25]Perry J, Davids JR, 1992. Gait analysis: normal and pathological function. J Pediatr Orthop, 12(6):815.

[26]Sankai Y, 2010. HAL: hybrid assistive limb based on cybernics. In: Kaneko M, Nakamura Y (Eds.), Robotics Research. Springer Berlin Heidelberg, p.25-34.

[27]Sanz-Merodio D, Cestari M, Arevalo JC, et al., 2014. Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. Adv Robot, 28(5): 329-338.

[28]Sasaki D, Noritsugu T, Takaiwa M, 2013. Development of pneumatic lower limb power assist wear driven with wearable air supply system. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4440-4445.

[29]Strausser KA, Kazerooni H, 2011. The development and testing of a human machine interface for a mobile medical exoskeleton. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4911-4916.

[30]Varol HA, Sup F, Goldfarb M, 2010. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng, 57(3):542-551.

[31]Veneman JF, Kruidhof R, Hekman EEG, et al., 2007. Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neur Syst Rehabil Eng, 15(3):379-386.

[32]Walsh CJ, Endo K, Herr H, 2007. A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Hum Robot, 4(3):487-506.

[33]Yan TF, Cempini M, Oddo CM, et al., 2015. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst, 64:120-136.

[34]Young AJ, Ferris DP, 2017. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans Neur Syst Rehabil Eng, 25(2):171-182.

[35]Young AJ, Simon A, Hargrove LJ, 2013. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. 35th Annual Int Conf IEEE Engineering in Medicine and Biology Society, p.1587- 1590.

[36]Young AJ, Kuiken TA, Hargrove LJ, 2014. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neur Eng, 11(5):056021.

[37]Zhang F, Fang Z, Liu M, et al., 2011. Preliminary design of a terrain recognition system. Annual Int Conf IEEE Engineering in Medicine and Biology Society, p.5452- 5455.

[38]Zoss AB, Kazerooni H, Chu A, 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (bleex). IEEE/ASME Trans Mechatron, 11(2):128-138.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE