Full Text:   <2979>

Summary:  <1775>

CLC number: O437

On-line Access: 2019-08-05

Received: 2018-11-24

Revision Accepted: 2019-05-28

Crosschecked: 2019-07-12

Cited: 0

Clicked: 5781

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shen-jin Zhang

http://orcid.org/0000-0002-3198-6971

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.7 P.885-913

http://doi.org/10.1631/FITEE.1800744


Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy


Author(s):  Zu-yan Xu, Shen-jin Zhang, Xing-jiang Zhou, Feng-feng Zhang, Feng Yang, Zhi-min Wang, Nan Zong, Guo-dong Liu, Lin Zhao, Li Yu, Chuang-tian Chen, Xiao-yang Wang, Qin-jun Peng

Affiliation(s):  Key Laboratory of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; more

Corresponding email(s):   zhangshenjin@163.com

Key Words:  Deep and vacuum ultraviolet laser, Second harmonic generation, KBe2BO3F2 nonlinear crystal, Photoelectron spectroscopy


Share this article to: More |Next Article >>>

Zu-yan Xu, Shen-jin Zhang, Xing-jiang Zhou, Feng-feng Zhang, Feng Yang, Zhi-min Wang, Nan Zong, Guo-dong Liu, Lin Zhao, Li Yu, Chuang-tian Chen, Xiao-yang Wang, Qin-jun Peng. Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(7): 885-913.

@article{title="Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy",
author="Zu-yan Xu, Shen-jin Zhang, Xing-jiang Zhou, Feng-feng Zhang, Feng Yang, Zhi-min Wang, Nan Zong, Guo-dong Liu, Lin Zhao, Li Yu, Chuang-tian Chen, Xiao-yang Wang, Qin-jun Peng",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="7",
pages="885-913",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800744"
}

%0 Journal Article
%T Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy
%A Zu-yan Xu
%A Shen-jin Zhang
%A Xing-jiang Zhou
%A Feng-feng Zhang
%A Feng Yang
%A Zhi-min Wang
%A Nan Zong
%A Guo-dong Liu
%A Lin Zhao
%A Li Yu
%A Chuang-tian Chen
%A Xiao-yang Wang
%A Qin-jun Peng
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 7
%P 885-913
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800744

TY - JOUR
T1 - Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy
A1 - Zu-yan Xu
A1 - Shen-jin Zhang
A1 - Xing-jiang Zhou
A1 - Feng-feng Zhang
A1 - Feng Yang
A1 - Zhi-min Wang
A1 - Nan Zong
A1 - Guo-dong Liu
A1 - Lin Zhao
A1 - Li Yu
A1 - Chuang-tian Chen
A1 - Xiao-yang Wang
A1 - Qin-jun Peng
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 7
SP - 885
EP - 913
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800744


Abstract: 
We briefly review recent results on photoemission spectroscopy based on the deep and vacuum ultraviolet diode pumped solid-state lasers which we have developed. Cascaded second harmonic generation with the nonlinear crystal KBe2BO3F2 (KBBF) is used to generate deep ultraviolet and vacuum ultraviolet laser radiation, which complements traditional incoherent light sources such as gas discharge lamps and synchrotron radiation, and has greatly improved resolution with respect to energy, momentum, and spin of photoemission spectroscopy. Many new functions have been developed with the advantages of high photon energy, narrow linewidth, high photon flux density, and so on. These have led to the observation of various new phenomena and the amassment of new data in the fields of high temperature superconductivity, topological electronics, Fermi semi-metals, and so forth. These laser systems have revived the field of photoemission spectroscopy and provided a new platform in this frontier research field.

高分辨深紫外激光光电子能谱仪进展

摘要:本文简要回顾了笔者所在团队研制的深紫外全固态激光光电子能谱仪近期研究成果。采用非线性晶体KBe2BO3F2(KBBF)倍频产生深紫外全固态激光,与传统非相干光源如气体放电灯和同步辐射形成互补,大大提高光电子能谱仪的能量、动量和自旋分辨率。由于具有光子能量高、线宽窄、光子通量密度高等优点,深紫外全固态激光光电子能谱仪开发出许多新功能,在高温超导体、拓扑绝缘体、费米半金属等领域观测到许多新现象,获得大量新的科学信息。深紫外全固态激光源为光电子能谱技术注入了新活力,为科技前沿领域提供了新的研究平台。

关键词:深紫外全固态激光器;二倍频;KBe2BO3F2非线性晶体;光电子能谱仪

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ali MN, Xiong J, Flynn S, et al., 2014. Large, non-saturating magnetoresistance in WTe2. Nature, 514(7521):205-208.

[2]Beamson G, Briggs D, Davies SF, et al., 1990. Performance and application of the Scienta ESCA300 spectrometer. Surf Interf Anal, 15(9):541-549.

[3]Bogdanov PV, Lanzara A, Kellar SA, et al., 2000. Evidence for an energy scale for quasiparticle dispersion in Bi2Sr2CaCu2O8. Phys Rev Lett, 85(12):2581-2584.

[4]Bok JM, Yun JH, Choi HY, et al., 2010. Momentum dependence of the single-particle self-energy and fluctuation spectrum of slightly underdoped Bi2Sr2CaCu2O8+δ from high-resolution laser angle-resolved photoemission. Phys Rev B, 81(17):174516.

[5]Chen CT, 2004. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal. Opt Mater, 26(4):425-429.

[6]Chen CT, Xu ZY, Deng DQ, et al., 1996. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal. Appl Phys Lett, 68(21):2930-2932.

[7]Chen CT, Xu ZY, Lü JH, et al., 2004. Variable-frequency laser coupler with non-linear optical crystal. Chinese Patent No. CN1172411C (in Chinese).

[8]Chen CT, Kanai T, Wang XY, et al., 2008. High-average-power light source below 200 nm from a KBe2BO3F2 prism-coupled device. Opt Lett, 33(3):282-284.

[9]Chen CT, Wang GL, Wang XY, et al., 2009. Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl Phys B, 97(1): 9-25.

[10]Couprie ME, 2014. New generation of light sources: present and future. J Electron Spectrosc Relat Phenom, 196:3-13.

[11]Cyranoski D, 2009. Materials science: China’s crystal cache. Nature, 457(7232):953-955.

[12]Dagotto E, 2005. Complexity in strongly correlated electronic systems. Science, 309(5732):257-262.

[13]Dai SB, Zong N, Yang F, et al., 2015. 167.75-nm vacuum-ultraviolet ps laser by eighth-harmonic generation of a 1342-nm Nd:YVO4 amplifier in KBBF. Opt Lett, 40(14): 3268-3271.

[14]Dai SB, Chen M, Zhang SJ, et al., 2016. 2.14 mW deep- ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF. Laser Phys Lett, 13(3):035401.

[15]Damascelli A, Hussain Z, Shen ZX, 2003. Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys, 75(2):473-541.

[16]Einstein A, 1905. Generation and conversion of light with regard to a heuristic point of view. Ann Phys, 322(6):132-148.

[17]Fujii T, Kumagai H, Midorikawa K, et al., 2000. Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms. Opt Lett, 25(19):1457-1459.

[18]Graf J, Hellmann S, Jozwiak C, et al., 2010. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy. J Appl Phys, 107(1):014912.

[19]Greber T, Raetzo O, Kreutz TJ, et al., 1997. A photoelectron spectrometer for k-space mapping above the Fermi level. Rev Sci Instrum, 68(12):4549-4554.

[20]Grüner F, Becker S, Schramm U, et al., 2007. Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl Phys B, 86(3):431-435.

[21]Haight R, Peale DR, 1994. Tunable photoemission with harmonics of subpicosecond lasers. Rev Sci Instrum, 65(6): 1853-1857.

[22]Haight R, Silberman JA, Lilie MI, 1988. Novel system for picosecond photoemission spectroscopy. Rev Sci Instrum, 59(9):1941-1946.

[23]Hertz H, 1887. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann Phys, 267(8):983-1000 (in German).

[24]Huang LN, McCormick TM, Ochi M, et al., 2016. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat Mater, 15(11):1155-1160.

[25]Hüfner S, 1995. Photoelectron Spectroscopy: Principles and Applications. Springer-Verlag Berlin Heidelberg.

[26]Hüfner S, 2003. Photoelectron Spectroscopy: Principles and Applications (3rd Ed.). Springer-Verlag Berlin Heidelberg.

[27]Jiang R, Mou DX, Wu Y, et al., 2014. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. Rev Sci Instrum, 85(3):033902.

[28]Johnson PD, Valla T, Fedorov AV, et al., 2001. Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ. Phys Rev Lett, 87(17):177007.

[29]Kaminski A, Randeria M, Campuzano JC, et al., 2001. Renormalization of spectral line shape and dispersion below Tc in Bi2Sr2CaCu2O8+δ. Phys Rev Lett, 86(6):1070-1073.

[30]Kanai T, Wang XY, Adachi S, et al., 2009. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device. Opt Expr, 17(10):8696-8703.

[31]Karlsson HS, Chiaia G, Karlsson UO, 1996. A system for time- and angle-resolved photoelectron spectroscopy based on an amplified femtosecond titanium:sapphire laser system. Rev Sci Instrum, 67(10):3610-3615.

[32]Kiss T, Kanetaka F, Yokoya T, et al., 2005. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor. Phys Rev Lett, 94(5):057001.

[33]Kiss T, Shimojima T, Ishizaka K, et al., 2008. A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy. Rev Sci Instrum, 79(2):023106.

[34]Koch P, Bartschke J, L’huillier JA, 2016. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a CW single-frequency microchip laser. Opt Expr, 23(24):31357-31366.

[35]Koralek JD, Douglas JF, Plumb NC, et al., 2006. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ. Phys Rev Lett, 96(1):017005.

[36]Koralek JD, Douglas JF, Plumb NC, et al., 2007. Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev Sci Instrum, 78(5):053905.

[37]Lanzara A, Bogdanov PV, Zhou XJ, et al., 2001. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature, 412(6846):510-514.

[38]Li CM, Zhou Y, Zong N, et al., 2009. Sixth harmonic generation of 1064-nm laser in KBBF prism coupling devices under two kinds of gas conditions. Chin Opt Lett, 7(7): 621-623.

[39]Li FQ, Zong N, Zhang FF, et al., 2012. Investigation of third-order optical nonlinearity in KBe2BO3F2 crystal by Z-scan. Appl Phys B, 108(2):301-305.

[40]Liu GD, Wang GL, Zhu Y, et al., 2008. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev Sci Instrum, 79(2):023105.

[41]Lv JH, Wang GL, Xu ZY, et al., 2001. High-efficiency fourth-harmonic generation of KBBF crystal. Opt Commun, 200(1-6):415-418.

[42]Mai ZH, 2013. Synchrotron Radiation Source and Its Application. Science Press, Beijing, China, p.152-620 (in Chinese).

[43]Mårtensson N, Baltzer P, Brühwiler PA, et al., 1994. A very high resolution electron spectrometer. J Electron Spectrosc Relat Phenom, 70(2):117-128.

[44]Mathias S, Miaja-Avila L, Murnane MM, et al., 2007. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. Rev Sci Instrum, 78(8):083105.

[45]Nagashima K, Liu LQ, 2001. Phase-matching properties of nonlinear crystals in deep ultraviolet. Opt Laser Technol, 33(8):611-615.

[46]Nakazato T, Ito I, Kobayashi Y, et al., 2016. Phase-matched frequency conversion below 150 nm in KBe2BO3F2. Opt Expr, 24(15):17149-17158.

[47]Nessler W, Ogawa S, Nagano H, et al., 1998. Femtosecond time-resolved study of the energy and temperature dependence of hot-electron lifetimes in Bi2Sr2CaCu2O8+δ. Phys Rev Lett, 81(20):4480-4483.

[48]Nomura Y, Ito Y, Ozawa A, et al., 2011. Coherent quasi-cw 153 nm light source at 33 MHz repetition rate. Opt Lett, 36(10):1758-1760.

[49]Nordling C, Sokolowski E, Siegbahn K, 1957. Precision method for obtaining absolute values of atomic binding energies. Phys Rev, 105(5):1676-1677.

[50]Passlack S, Mathias S, Andreyev O, et al., 2006. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J Appl Phys, 100(2): 024912.

[51]Peng QJ, Zong N, Zhang SJ, et al., 2018. DUV/VUV all-solid-state lasers: twenty years of progress and the future. IEEE J Sel Top Quant Electron, 24(5):1602312.

[52]Perfetti L, Loukakos PA, Lisowski M, et al., 2006. Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition. Phys Rev Lett, 97(6):067402.

[53]Petersen JC, Kaiser S, Dean N, et al., 2011. Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys Rev Lett, 107(17):177402.

[54]Petrov V, Rotermund F, Noack F, 1998a. Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8.4H2O. Electron Lett, 34(18):1748-1750.

[55]Petrov V, Rotermund F, Noack F, et al., 1998b. Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm. J Appl Phys, 84(11):5887-5892.

[56]Reber TJ, Plumb NC, Waugh JA, et al., 2014. Effects, determination, and correction of count rate nonlinearity in multi-channel analog electron detectors. Rev Sci Instrum, 85(4):043907.

[57]Rohwer T, Hellmann S, Wiesenmayer M, et al., 2011. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature, 471(7339):490-493.

[58]Shi JR, Tang SJ, Wu B, et al., 2004. Direct extraction of the Eliashberg function for electron-phonon coupling: a case study of Be(1010). Phys Rev Lett, 92(18):186401.

[59]Shimojima T, Okazaki K, Shin S, 2015. Low-temperature and high-energy-resolution laser photoemission spectroscopy. J Phys Soc Jpn, 84(7):072001.

[60]Smallwood CL, Zhang WT, Miller TL, et al., 2014. Time- and momentum-resolved gap dynamics in Bi2Sr2CaCu2O8+δ. Phys Rev B, 89(11):115126.

[61]Smith NV, Traum MM, 1973. Angular dependence of photoemission from the (110) face of GaAs. Phys Rev Lett, 31(20):1247-1250.

[62]Smith NV, Traum MM, di Salvo FJ, 1974. Mapping energy bands in layer compounds from the angular dependence of ultraviolet photoemission. Sol State Commun, 15(2): 211-214.

[63]Sobota JA, Yang SL, Kemper AF, et al., 2013. Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3. Phys Rev Lett, 111(13):136802.

[64]Soluyanov AA, Gresch D, Wang ZJ, et al., 2015. Type-II Weyl semimetals. Nature, 527(7579):495-498.

[65]Taniuchi T, Kotani Y, Shin S, 2015. Ultrahigh-spatial- resolution chemical and magnetic imaging by laser-based photoemission electron microscopy. Rev Sci Instrum, 86(2):023701.

[66]Trabs P, Noack F, Aleksandrovsky AS, et al., 2016. Generation of coherent radiation in the vacuum ultraviolet using randomly quasi-phase-matched strontium tetraborate. Opt Lett, 41(3):618-621.

[67]Wang CL, Zhang Y, Huang JW, et al., 2017. Evidence of electron-hole imbalance in WTe2 from high-resolution angle-resolved photoemission spectroscopy. Chin Phys Lett, 34(9):097305.

[68]Wang GL, Wang XY, Zhou Y, et al., 2008a. 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal. Appl Phys B, 91(1):95-97.

[69]Wang GL, Wang XY, Zhou Y, et al., 2008b. High-efficiency frequency conversion in deep ultraviolet with a KBe2BO3F2 prism-coupled device. Appl Opt, 47(3):486-488.

[70]Wang YH, Steinberg H, Jarillo-Herrero P, et al., 2013. Observation of Floquet-Bloch states on the surface of a topological insulator. Science, 342(6157):453-457.

[71]Wang ZM, Zhang JY, Yang F, et al., 2009. Stable operation of 4 mW nanoseconds radiation at 177.3 nm by second harmonic generation in KBe2BO3F2 crystals. Opt Expr, 17(22):20021-20032.

[72]Won R, 2014. Two-dimensional materials: laser Q-switching. Nat Photon, 8(6):422.

[73]Wu Y, Mou DX, Jo NH, et al., 2016. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys Rev B, 94(12):121113.

[74]Xie ZJ, He SL, Chen CY, et al., 2014. Orbital-selective spin texture and its manipulation in a topological insulator. Nat Commun, 5:3382.

[75]Xu B, Liu LJ, Wang XY, et al., 2015. Generation of high power 200 mW laser radiation at 177.3 nm in KBe2BO3F2 crystal. Appl Phys B, 121(4):489-494.

[76]Xu M, Ermolenkov VV, Uversky VN, et al., 2008. Hen egg white lysozyme fibrillation: a deep-UV resonance Raman spectroscopic study. J Biophoton, 1(3):215-229.

[77]Xu Z, Zhang FF, Zhang SJ, et al., 2014a. Experimental investigation and theoretical analysis of pulse repetition rate adjustable deep ultraviolet picosecond radiation by second harmonic generation in KBe2BO3F2. Laser Phys, 24(6):065401.

[78]Xu Z, Tu W, Yang F, et al., 2014b. Narrow linewidth 177.3-nm nanosecond laser with high efficiency and high power. IEEE Photon Technol Lett, 26(10):980-982.

[79]Xu ZY, Lü JH, Wang GL, et al., 2001. Non-linear Optical Crystal Laser Frequency Variable Grating Coupler. Chinese Patent No. CN01123553.5 (in Chinese).

[80]Yang F, Wang Z, Zhou Y, et al., 2009. Theoretical and experimental investigations of nanosecond 177.3 nm deep- ultraviolet light by second harmonic generation in KBBF. Appl Phys B, 96(2-3):415-422.

[81]Yang F, Wang ZM, Zhou Y, et al., 2010. 41 mW high average power picosecond 177.3 nm laser by second-harmonic generation in KBBF. Opt Commun, 283(1):142-145.

[82]Yang J, Yang F, Zhang JY, et al., 2013. Pulse broadening of deep ultraviolet femtosecond laser from second harmonic generation in KBe2BO3F2 crystal. Opt Commun, 288: 114-117.

[83]Zhang FF, Yang F, Zhang SJ, et al., 2012. A polarization-adjustable picosecond deep-ultraviolet laser for spin- and angle-resolved photoemission spectroscopy. Chin Phys Lett, 29(6):064206.

[84]Zhang FF, Yang F, Zhang SJ, et al., 2013. Picosecond widely tunable deep-ultraviolet laser for angle-resolved photoemission spectroscopy. Chin Phys B, 22(6):064212.

[85]Zhang HJ, Wang G, Guo L, et al., 2008. 175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal. Appl Phys B, 93(2-3):323-326.

[86]Zhang HJ, Liu CX, Zhang SC, 2013. Spin-orbital texture in topological insulators. Phys Rev Lett, 111(6):066801.

[87]Zhang SJ, Cui DF, Zhang FF, et al., 2014. High power all solid state VUV lasers. J Electron Spectrosc Relat Phenom, 196:20-23.

[88]Zhang WT, Liu GD, Meng JQ, et al., 2008. High energy dispersion relations for the high temperature Bi2Sr2CaCu2O8 superconductor from laser-based angle-resolved photoemission spectroscopy. Phys Rev Lett, 101(1):017002.

[89]Zhang WT, Smallwood CL, Jozwiak C, et al., 2013. Signatures of superconductivity and pseudogap formation in non- equilibrium nodal quasiparticles revealed by ultrafast angle-resolved photoemission. Phys Rev B, 88(24): 245132.

[90]Zhang X, Wang ZM, Wang GL, et al., 2009. Widely tunable and high-average-power fourth-harmonic generation of a Ti:sapphire laser with a KBe2BO3F2 prism-coupled device. Opt Lett, 34(9):1342-1344.

[91]Zhang X, Wang ZM, Luo SY, et al., 2011. Widely tunable fourth harmonic generation of a Ti:sapphire laser based on RBBF crystal. Appl Phys B, 102(4):825-830.

[92]Zhang Y, Sato Y, Watanabe N, et al., 2009. Generation of quasi-continuous-wave vacuum-ultraviolet coherent light by fourth-harmonic of a Ti:sapphire laser with KBBF crystal. Opt Expr, 17(10):8119-8124.

[93]Zhang Y, Wang CL, Yu L, et al., 2017. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nat Commun, 8:15512.

[94]Zhou C, Kanai T, Wang XY, et al., 2012. Generation of ultrashort 25-μJ pulses at 200 nm by dual broadband frequency doubling with a thin KBe2BO3F2 crystal. Opt Expr, 20(13):13684-13691.

[95]Zhou XJ, Yoshida T, Lanzara A, et al., 2003. High-temperature superconductors: universal nodal Fermi velocity. Nature, 423(6938):398.

[96]Zhou XJ, He SL, Liu GD, et al., 2018. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep Prog Phys, 81(6): 062101.

[97]Zhou Y, Wang GL, Li CM, et al., 2008. Sixth harmonic of a Nd: YVO4 laser generation in KBBF for ARPES. Chin Phys Lett, 25(3):963-965.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE