Full Text:   <367>

Summary:  <41>

Suppl. Mater.: 

CLC number: TP393

On-line Access: 2020-06-12

Received: 2019-04-17

Revision Accepted: 2019-10-11

Crosschecked: 2020-05-20

Cited: 0

Clicked: 539

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

M. Usman Ashraf

https://orcid.org/0000-0001-7341-8625

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.6 P.917-930

10.1631/FITEE.1900198


MEACC: an energy-efficient framework for smart devices using cloud computing systems


Author(s):  Khalid Alsubhi, Zuhaib Imtiaz, Ayesha Raana, M. Usman Ashraf, Babur Hayat

Affiliation(s):  Department of Computer Science, King Abdulaziz University, Saudi Arabia; more

Corresponding email(s):   usman.ashraf@skt.umt.edu.pk

Key Words:  Offloading, Smart devices, Cloud computing, Mobile computing, Power consumption


Khalid Alsubhi, Zuhaib Imtiaz, Ayesha Raana, M. Usman Ashraf, Babur Hayat. MEACC: an energy-efficient framework for smart devices using cloud computing systems[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(6): 917-930.

@article{title="MEACC: an energy-efficient framework for smart devices using cloud computing systems",
author="Khalid Alsubhi, Zuhaib Imtiaz, Ayesha Raana, M. Usman Ashraf, Babur Hayat",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="6",
pages="917-930",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900198"
}

%0 Journal Article
%T MEACC: an energy-efficient framework for smart devices using cloud computing systems
%A Khalid Alsubhi
%A Zuhaib Imtiaz
%A Ayesha Raana
%A M. Usman Ashraf
%A Babur Hayat
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 6
%P 917-930
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900198

TY - JOUR
T1 - MEACC: an energy-efficient framework for smart devices using cloud computing systems
A1 - Khalid Alsubhi
A1 - Zuhaib Imtiaz
A1 - Ayesha Raana
A1 - M. Usman Ashraf
A1 - Babur Hayat
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 6
SP - 917
EP - 930
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900198


Abstract: 
Rapidly increasing capacities, decreasing costs, and improvements in computational power, storage, and communication technologies have led to the development of many applications that carry increasingly large amounts of traffic on the global networking infrastructure. smart devices lead to emerging technologies and play a vital role in rapid evolution. smart devices have become a primary 24/7 need in today’s information technology world and include a wide range of supporting processing-intensive applications. Extensive use of many applications on smart devices results in increasing complexity of mobile software applications and consumption of resources at a massive level, including smart device battery power, processor, and RAM, and hinders their normal operation. Appropriate resource utilization and energy efficiency are fundamental considerations for smart devices because limited resources are sporadic and make it more difficult for users to complete their tasks. In this study we propose the model of mobile energy augmentation using cloud computing (MEACC), a new framework to address the challenges of massive power consumption and inefficient resource utilization in smart devices. MEACC efficiently filters the applications to be executed on a smart device or offloaded to the cloud. Moreover, MEACC efficiently calculates the total execution cost on both the mobile and cloud sides including communication costs for any application to be offloaded. In addition, resources are monitored before making the decision to offload the application. MEACC is a promising model for load balancing and power consumption reduction in emerging mobile computing environments.

MEACC:一种基于云计算的智能设备节能架构

Khalid ALSUBHI1, ZuhaibI MTIAZ2, Ayesha RAANA3, M. Usman ASHRAF3, Babur HAYAT4
1阿卜杜勒阿齐兹国王大学计算机科学系,沙特阿拉伯
2锡亚尔科特大学计算机科学系,巴基斯坦锡亚尔科特,51310
3管理技术大学计算机科学系,巴基斯坦锡亚尔科特,51310
4拉合尔大学计算机科学系,巴基斯坦古吉拉特,50700

摘要:随着智能设备存储容量快速增长,价格不断降低,以及算力、存储和通信技术的提升,APP应用程序得到快速发展,在全球网络基础设施上耗费的流量亦越来越多。智能设备引领着新兴技术发展,并在其快速演进中发挥至关重要的作用,已成为信息技术时代全天候的基本需求。智能设备运行着广泛的处理密集型APP,APP在智能设备上的大量使用导致其复杂性不断增加,资源大量消耗,包括智能设备的电池电量、处理器、RAM等,阻碍了智能设备正常运行。资源的限制极大增加了用户处理任务的难度,因此合理的资源利用和能效是智能设备的基本考虑因素。本文提出一种基于云计算的移动端能效增强模型(MEACC),致力于解决智能设备中功耗大、资源利用率低等关键问题。MEACC能有效筛选出需在智能设备上运行或卸载至云端处理的APP。此外,可有效计算出移动端以及云端所需的运行开销,包括通信成本。在作出卸载决定前,MEACC持续监测资源情况。MEACC既能实现负载均衡又能降低功耗,是新兴移动计算领域十分具有前景的应用架构。

关键词:卸载;智能设备;云计算;移动计算;能耗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Calheiros RN, Ranjan R, Beloglazov A, et al., 2011. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exp, 41(1):23-50.

[2]Cao HJ, Cai J, 2017. Distributed multiuser computation off- loading for cloudlet-based mobile cloud computing: a game-theoretic machine learning approach. IEEE Trans Veh Technol, 67(1):752-764.

[3]Chun BG, Ihm S, Maniatis P, et al., 2011. CloneCloud: elastic execution between mobile device and cloud. Proc 6th Conf on Computer Systems, p.301-314.

[4]Creeger M, 2009. CTO roundtable: cloud computing. Queue, 7(5):1.

[5]Cuervo E, Balasubramanian A, Cho DK, et al., 2010. MAUI: making smartphones last longer with code offload. Proc 8th Int Conf on Mobile Systems, Applications, and Services, p.49-62.

[6]Dinh HT, Lee C, Niyato D, et al., 2013. A survey of mobile cloud computing: architecture, applications, and approaches. Wirel Commun Mob Comput, 13(18):1587- 1611.

[7]Elgendy MA, Shawish A, Moussa MI, 2014. MCACC: new approach for augmenting the computing capabilities of mobile devices with cloud computing. Science and Information Conf, p.79-86.

[8]Gajbhe M, Sakhare SR, 2015. Performance augmentation of mobile devices using cloud computing. Int J Comput Sci Inform Technol, 6(4):3581-3587.

[9]Hasan R, Hossain MM, Khan R, 2015. Aura: an IoT based cloud infrastructure for localized mobile computation outsourcing. Proc 3rd IEEE Int Conf on Mobile Cloud Computing, Services, and Engineering, p.183-188.

[10]Jadad H, Touzene A, Alzeidi N, et al., 2016. Realistic off- loading scheme for mobile cloud computing. Proc 13th Int Conf on Mobile Web and Intelligent Information Systems, p.81-92.

[11]Kosta S, Aucinas A, Hui P, et al., 2012. Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. Proc IEEE INFOCOM, p.945- 953.

[12]Kovachev D, Klamma R, 2012. Framework for computation offloading in mobile cloud computing. Int Interact Multim Artif Intell, 1(7):6-15.

[13]Liu FM, Shu P, Jin H, et al., 2013. Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications. IEEE Wirel Commun, 20(3): 14-22.

[14]Mell P, Grance T, 2011. The NIST Definition of Cloud Computing. NIST Special Publication 800-145, NIST, Gaithersburg.

[15]Mukherjee A, De D, 2014. A cost-effective location tracking strategy for femtocell based mobile network. Proc Int Conf on Control, Instrumentation, Energy and Communication, p.533-537.

[16]Paranjothi A, Khan MS, Nijim M, 2017. Survey on three components of mobile cloud computing: offloading, distribution and privacy. J Comput Commun, 5(6):75210.

[17]Robinson S, 2009. Cellphone Energy Gap: Desperately Seeking Solutions. Strategy Analytics. Technology Report, Chicago, IL, USA.

[18]Satyanarayanan M, Bahl V, Caceres R, et al., 2009. The case for VM-based cloudlets in mobile computing. IEEE Perv Comput, 8(4):14-23.

[19]Sinha U, Shekhar M, 2015. Comparison of various cloud simulation tools available in cloud computing. Int J Adv Res Comput Commun Eng, 4(3):171-176.

[20]Sookhak M, Yu FR, Khan MK, et al., 2017. Attribute-based data access control in mobile cloud computing: taxonomy and open issues. Fut Gener Comput Syst, 72:273-287.

[21]Tao XY, Ota K, Dong MX, et al., 2017. Performance guaranteed computation offloading for mobile-edge cloud computing. IEEE Wirel Commun Lett, 6(6):774-777.

[22]Zanni A, Yu SY, Secci S, et al., 2017. Automated offloading of Android applications for computation/energy optimizations. IEEE Conf on Computer Communications Workshops, p.990-991.

[23]Zhang L, Fu D, Liu JC, et al., 2017. On energy-efficient off- loading in mobile cloud for real-time video applications. IEEE Trans Circ Syst Video Technol, 27(1):170-181.

[24]Zhang Q, Cheng L, Boutaba R, 2010. Cloud computing: state-of-the-art and research challenges. J Int Serv Appl, 1(1):7-18.

[25]Zhang XW, Jeong S, Kunjithapatham A, et al., 2010. Towards an elastic application model for augmenting computing capabilities of mobile platforms. Proc 3rd Int Conf on Mobile Wireless Middleware, Operating Systems, and Applications, p.161-174.

[26]Zhou BW, Buyya R, 2018. Augmentation techniques for mobile cloud computing: a taxonomy, survey, and future directions. ACM Comput Surv, 51(1):13.

[27]Zhou BW, Dastjerdi AV, Calheiros RN, et al., 2015. A context sensitive offloading scheme for mobile cloud computing service. IEEE 8th Int Conf on Cloud Computing, p.869- 876.

[28]Zissis D, Lekkas D, 2012. Addressing cloud computing security issues. Fut Gener Comput Syst, 28(3):583-592.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE