Full Text:   <91>

Summary:  <40>

CLC number: O231

On-line Access: 2020-06-12

Received: 2019-12-28

Revision Accepted: 2020-04-09

Crosschecked: 2020-04-30

Cited: 0

Clicked: 190

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bin-bin He

https://orcid.org/0000-0002-8860-6263

Hua-cheng Zhou

https://orcid.org/0000-0001-6856-2358

Chun-hai Kou

https://orcid.org/0000-0002-0958-5725

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.6 P.844-855

10.1631/FITEE.1900736


Controllability of fractional-order damped systems with time-varying delays in control


Author(s):  Bin-bin He, Hua-cheng Zhou, Chun-hai Kou

Affiliation(s):  College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China; more

Corresponding email(s):   hebinbin45@126.com, hczhou@amss.ac.cn, kouchunhai@dhu.edu.cn

Key Words:  Controllability, Fractional-order damped systems, Time-varying delays, Gramian matrix


Bin-bin He, Hua-cheng Zhou, Chun-hai Kou. Controllability of fractional-order damped systems with time-varying delays in control[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(6): 844-855.

@article{title="Controllability of fractional-order damped systems with time-varying delays in control",
author="Bin-bin He, Hua-cheng Zhou, Chun-hai Kou",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="6",
pages="844-855",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900736"
}

%0 Journal Article
%T Controllability of fractional-order damped systems with time-varying delays in control
%A Bin-bin He
%A Hua-cheng Zhou
%A Chun-hai Kou
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 6
%P 844-855
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900736

TY - JOUR
T1 - Controllability of fractional-order damped systems with time-varying delays in control
A1 - Bin-bin He
A1 - Hua-cheng Zhou
A1 - Chun-hai Kou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 6
SP - 844
EP - 855
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900736


Abstract: 
In this study, we focus on the controllability of fractional-order damped systems in linear and nonlinear cases with multiple time-varying delays in control. For the linear system based on the Mittag-Leffler matrix function, we define a controllability gramian matrix, which is useful in judging whether the system is controllable or not. Furthermore, in two special cases, we present serval equivalent controllable conditions which are easy to verify. For the nonlinear system, under the controllability of its corresponding linear system, we obtain a sufficient condition on the nonlinear term to ensure that the system is controllable. Finally, two examples are given to illustrate the theory.

带有时变时滞的分数阶阻尼系统可控性研究

何彬彬1,周华成2,寇春海3
1上海工程技术大学城市轨道交通学院,中国上海市,201620
2中南大学数学与统计学院,中国长沙市,410075
3东华大学理学院,中国上海市,201620

摘要:本文研究线性与非线性分数阶阻尼系统的可控性。该系统具有多重时变时滞,且时滞位于控制函数中。对于线性系统,基于Mittag-Leffler函数,定义一个可控性Gramian矩阵,该矩阵对于判定线性系统是否可控具有重要作用。此外,对于两种特殊线性系统,给出易于判别的若干等价可控性条件。对于非线性系统,在相应线性系统可控前提下,给出充分条件确保系统可控性。最后,给出两个数值示例验证结论有效性。

关键词:可控性;分数阶阻尼系统;时变时滞;Gramian矩阵

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Balachandran K, Park JY, 2009. Controllability of fractional integrodifferential systems in Banach spaces. Nonl Anal Hybr Syst, 3(4):363-367.

[2]Balachandran K, Zhou Y, Kokila J, 2012a. Relative controllability of fractional dynamical systems with delays in control. Commun Nonl Sci Numer Simul, 17(9):3508-3520.

[3]Balachandran K, Kokila J, Trujillo JJ, 2012b. Relative controllability of fractional dynamical systems with multiple delays in control. Comput Math Appl, 64(10):3037-3045.

[4]Balachandran K, Govindaraj V, Rivero M, et al., 2015. Controllability of fractional damped dynamical systems. Appl Math Comput, 257:66-73.

[5]Dauer JP, 1976. Nonlinear perturbations of quasi-linear control systems. J Math Anal Appl, 54(3):717-725.

[6]Ge FD, Zhou HC, Kou CH, 2016. Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique. Appl Math Comput, 275:107-120.

[7]Gu KQ, Kharitonov VL, Chen J, 2003. Stability of Time-Delay Systems. Birkhäuser-Verlag, Boston, USA.

[8]He BB, Zhou HC, Kou CH, 2016a. The controllability of fractional damped dynamical systems with control delay. Commun Nonl Sci Numer Simul, 32:190-198.

[9]He BB, Zhou HC, Kou CH, 2016b. On the controllability of fractional damped dynamical systems with distributed delays. Proc 35th Chinese Control Conf, p.10418-10423.

[10]Hilfer R, 2000. Applications of Fractional Calculus in Physics. World Scientific Publisher, Singapore.

[11]Kilbas AA, Srivastava HM, Trujillo JJ, 2006. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, the Netherlands.

[12]Liu S, Yang R, Zhou XF, et al., 2019. Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems. Commun Nonl Sci Numer Simul, 73:351-362.

[13]Miller KS, Ross B, 1993. An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley-Interscience Publication, New York, USA.

[14]Monje CA, Chen Y, Vinagre BM, et al., 2010. Fractional-Order Systems and Controls: Fundamentals and Applications. Springer-Verlag, London, UK.

[15]Podlubny I, 1998. Fractional Differential Equations. Academic Press, New York, USA.

[16]Sikora B, Klamka J, 2017. Constrained controllability of fractional linear systems with delays in control. Syst Contr Lett, 106:9-15.

[17]Zhou Y, 2014. Basic Theory of Fractional Differential Equations. World Scientific Publisher, Singapore.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE