Full Text:   <1424>

Summary:  <195>

CLC number: TN79

On-line Access: 2023-03-25

Received: 2022-08-28

Revision Accepted: 2022-11-22

Crosschecked: 2023-03-25

Cited: 0

Clicked: 1113

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mohammad GHOLAMI

https://orcid.org/0000-0003-4696-5900

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.3 P.457-469

http://doi.org/10.1631/FITEE.2200361


Low-power, high-speed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study


Author(s):  Mohammad GHOLAMI, Zaman AMIRZADEH

Affiliation(s):  Department of Electrical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar 4741613534, Iran; more

Corresponding email(s):   m.gholami@umz.ac.ir

Key Words:  Quantum-dot cellular automata (QCA), Quantum-dot, T-latch, T-flip-flop, Counter, Selective counter, QCADesigner, QCAPro


Mohammad GHOLAMI, Zaman AMIRZADEH. Low-power, high-speed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(3): 457-469.

@article{title="Low-power, high-speed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study",
author="Mohammad GHOLAMI, Zaman AMIRZADEH",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="3",
pages="457-469",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200361"
}

%0 Journal Article
%T Low-power, high-speed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study
%A Mohammad GHOLAMI
%A Zaman AMIRZADEH
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 3
%P 457-469
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200361

TY - JOUR
T1 - Low-power, high-speed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study
A1 - Mohammad GHOLAMI
A1 - Zaman AMIRZADEH
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 3
SP - 457
EP - 469
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200361


Abstract: 
quantum-dot cellular automata (QCA)%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>quantum-dot cellular automata (QCA) is a new nanotechnology for the implementation of nano-sized digital circuits. This nanotechnology is remarkable in terms of speed, area, and power consumption compared to complementary metal-oxide-semiconductor (CMOS) technology and can significantly improve the design of various logic circuits. We propose a new method for implementing a t-latch in QCA technology in this paper. The proposed method uses the intrinsic features of QCA in timing and clock phases, and therefore, the proposed cell structure is less occupied and less power-consuming than existing implementation methods. In the proposed t-latch, compared to previous best designs, reductions of 6.45% in area occupation and 44.49% in power consumption were achieved. In addition, for the first time, a reset-based t-latch and a t-latch with set and reset capabilities are designed. Using the proposed t-latch, a new 3-bit counter is developed which reduces 2.14% cell numbers compared to the best of previous designs. Moreover, based on the 3-bit counter, a 4-bit counter is designed, which reduces 0.51% cell numbers and 4.16% cross-section area compared to previous designs. In addition, two selective counters are introduced to count from 0 to 5 and from 2 to 5. Simulations were performed using QCADesigner and QCAPro tools in coherence vector engine mode. The proposed circuits are compared with related designs in terms of delay, cell numbers, area, and leakage power.

基于量子点元胞自动机的低能耗、高速度和高效面积时序电路:T型锁存器和计数器研究

Mohammad GHOLAMI1,Zaman AMIRZADEH2
1马赞达兰大学工程技术学院电气工程系,伊朗巴博勒萨尔市,4741613534
2马赞达兰科学技术大学电气工程系,伊朗巴博勒市,4716685635
摘要:量子点元胞自动机(QCA)是一种用于实现纳米数字电路的新型纳米技术。这种纳米技术在速度、面积和功耗方面都优于互补金属氧化物半导体(CMOS)技术,并且可以显著改善各种逻辑电路设计。本文提出一种在QCA技术中实现T型锁存器的新方法,该方法利用了QCA在时序和时钟相位上的固有特征,因此,所提单元结构与现有方法相比占用面积更少,功耗更低。与之前的最佳设计相比,该T型锁存器的占用面积减少6.45%,功耗降低44.49%。此外,本文首次设计了基于复位的T型锁存器和具有置位和复位功能的T型锁存器。基于所提T型锁存器,开发了一种新型3位计数器,与之前的最佳设计相比减少2.14%的单元数。在3位计数器的基础上,设计了4位计数器,与之前的设计相比,减少0.51%的单元数和4.16%的截面积。此外还引入两个选择性计数器,分别从0到5和从2到5进行计数。在相干矢量引擎模式下,使用QCADesigner和QCAPro软件进行模拟,并将所提电路与相关设计在延迟、单元数、面积和漏电功率方面进行了比较。

关键词:量子点元胞自动机(QCA);量子点;T型锁存器;T型触发器;计数器;选择性计数器;QCADesigner软件;QCAPro软件

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abutaleb MM, 2018a. A novel configurable flip flop design using inherent capabilities of quantum-dot cellular automata. Microprocess Microsyst, 56:101-112.

[2]Abutaleb MM, 2018b. Robust and efficient QCA cell-based nanostructures of elementary reversible logic gates. J Supercomput, 74(11):6258-6274.

[3]Ahmadpour SS, Mosleh M, Heikalabad SR, 2022. Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis. J Supercomput, 78(2):1672-1695.

[4]Akbari-Hasanjani R, Sabbaghi‐Nadooshan R, 2022. Innovation quinary and n-value toward fuzzy logic QCA cell design. Adv Theory Simul, 5(2):2100304.

[5]Akbari-Hasanjani R, Sabbaghi-Nadooshan R, Tanhayi MR, 2021. New polarization and power calculations with error elimination in ternary QCA. Comput Electr Eng, 96:107557.

[6]Akbari-Hasanjani R, Sabbaghi-Nadooshan R, Haghparast M, 2022. Toward quaternary QCA: novel majority and XOR fuzzy gates. IEEE Access, 10:38511-38522.

[7]Amirzadeh Z, Gholami M, 2019. Counters designs with minimum number of cells and area in the quantum-dot cellular automata technology. Int J Theor Phys, 58(6):1758-1775.

[8]Angizi S, Navi K, Sayedsalehi S, et al., 2014. Efficient quantum dot cellular automata memory architectures based on the new wiring approach. J Comput Theor Nanosci, 11(11):2318-2328.

[9]Angizi S, Moaiyeri MH, Farrokhi S, et al., 2015. Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst, 39(7):512-520.

[10]Bahar AN, Wahid KA, 2022. Design and implementation of an N×32-bit SRAM in QCA using coplanar wire-crossing network. Optik, 266:169577.

[11]Bhavani KS, Alinvinisha V, 2015. Utilization of QCA based T flip flop to design counters. Proc Int Conf on Innovations in Information, Embedded and Communication Systems, p.1-6.

[12]Dehbozorgi L, Sabbaghi-Nadooshan R, Kashaninia A, 2022a. Novel fault-tolerant processing in memory cell in ternary quantum-dot cellular automata. J Electron Test, 38(4):419-444.

[13]Dehbozorgi L, Sabbaghi-Nadooshan R, Kashaninia A, 2022b. Realization of processing-in-memory using binary and ternary quantum-dot cellular automata. J Supercomput, 78(5):6846-6874.

[14]Dutta P, Mukhopadhyay D, 2014. New architecture for flip flops using quantum-dot cellular automata. ICT and Critical Infrastructure: Proc 48th Annual Convention of Computer Society of India-Vol II, p.707-714.

[15]Fazili MM, Shah MF, Naz SF, et al., 2022. Next generation QCA technology based true random number generator for cryptographic applications. Microelectr J, 126:105502.

[16]Gholami M, Amirzadeh Z, 2023. Novel low-latency T-latch with minimum number of cells in QCA technology. Adv Theory Simul, 6(1):2200686.

[17]Gholami M, Movahedi M, Amirzadeh Z, 2022. Latch and flip-flop design in QCA technology with minimum number of cells. Comput Electr Eng, 102:108186.

[18]Hashemi S, Navi K, 2012. New robust QCA D flip flop and memory structures. Microelectr J, 43(12):929-940.

[19]Kalyan BS, Kaur H, Pachori K, et al., 2022. An efficient design of D flip flop in quantum-dot cellular automata (QCA) for sequential circuits. In: Nandan D, Mohanty BK, Kumar S, et al. (Eds.), VLSI Architecture for Signal, Speech, and Image Processing. Apple Academic Press, New York, USA, p.253-272.

[20]Khan A, Arya R, 2022. Efficient design of dual‐mode nano counter: an approach using quantum dot cellular automata. Concurr Comput Pract Exp, 34(13):e6910.

[21]Kim K, Wu KJ, Karri R, 2005. Towards designing robust QCA architectures in the presence of sneak noise paths. Proc Design, Automation and Test in Europe, p.1214-1219.

[22]Majeed AH, Alkaldy E, bin Zainal MS, et al., 2019. Synchronous counter design using novel level sensitive T-FF in QCA technology. J Low Power Electron Appl, 9(3):27.

[23]Nafees N, Ahmed S, Kakkar V, et al., 2022. QCA-based PIPO and SIPO shift registers using cost-optimized and energy-efficient D flip flop. Electronics, 11(19):3237.

[24]Rad SK, Heikalabad SR, 2017. Reversible flip-flops in quantum-dot cellular automata. Int J Theor Phys, 56(9):2990-3004.

[25]Sheikhfaal S, Angizi S, Sarmadi S, et al., 2015. Designing efficient QCA logical circuits with power dissipation analysis. Microelectr J, 46(6):462-471.

[26]Torabi M, 2011. A new architecture for T flip flop using quantum-dot cellular automata. Proc 3rd Asia Symp on Quality Electronic Design, p.296-300.

[27]Torres FS, Wille R, Niemann P, et al., 2018. An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans Comput Aided Des Integr Circ Syst, 37(12):3031-3041.

[28]Zoka S, Gholami M, 2018. A novel rising edge triggered resettable D flip-flop using five input majority gate. Microprocess Microsyst, 61:327-335.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE