Full Text:   <9884>

Summary:  <397>

CLC number: TP393

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-03-27

Cited: 0

Clicked: 1415

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiaoqiang DI

https://orcid.org/0000-0001-9432-4564

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.6 P.844-858

http://doi.org/10.1631/FITEE.2200507


A multipath routing algorithm for satellite networksbased on service demand and traffic awareness


Author(s):  Ziyang XING, Hui QI, Xiaoqiang DI, Jinyao LIU, Rui XU, Jing CHEN, Ligang CONG

Affiliation(s):  Jilin Key Laboratory of Network and Information Security, Changchun 130022, China; more

Corresponding email(s):   dixiaoqiang@cust.edu.cn

Key Words:  Software-defined network (SDN), Quick user datagram protocol Internet connection (QUIC), Reinforcement learning, Sketch, Multi-service demand, Satellite network


Ziyang XING, Hui QI, Xiaoqiang DI, Jinyao LIU, Rui XU, Jing CHEN, Ligang CONG. A multipath routing algorithm for satellite networksbased on service demand and traffic awareness[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(6): 844-858.

@article{title="A multipath routing algorithm for satellite networksbased on service demand and traffic awareness",
author="Ziyang XING, Hui QI, Xiaoqiang DI, Jinyao LIU, Rui XU, Jing CHEN, Ligang CONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="6",
pages="844-858",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200507"
}

%0 Journal Article
%T A multipath routing algorithm for satellite networksbased on service demand and traffic awareness
%A Ziyang XING
%A Hui QI
%A Xiaoqiang DI
%A Jinyao LIU
%A Rui XU
%A Jing CHEN
%A Ligang CONG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 6
%P 844-858
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200507

TY - JOUR
T1 - A multipath routing algorithm for satellite networksbased on service demand and traffic awareness
A1 - Ziyang XING
A1 - Hui QI
A1 - Xiaoqiang DI
A1 - Jinyao LIU
A1 - Rui XU
A1 - Jing CHEN
A1 - Ligang CONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 6
SP - 844
EP - 858
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200507


Abstract: 
With the reduction in manufacturing and launch costs of low Earth orbit satellites and the advantages of large coverage and high data transmission rates, satellites have become an important part of data transmission in air-ground networks. However, due to the factors such as geographical location and people’s living habits, the differences in user’ demand for multimedia data will result in unbalanced network traffic, which may lead to network congestion and affect data transmission. In addition, in traditional satellite network transmission, the convergence of network information acquisition is slow and global network information cannot be collected in a fine-grained manner, which is not conducive to calculating optimal routes. The service quality requirements cannot be satisfied when multiple service requests are made. Based on the above, in this paper artificial intelligence technology is applied to the satellite network, and a software-defined network is used to obtain the global network information, perceive network traffic, develop comprehensive decisions online through reinforcement learning, and update the optimal routing strategy in real time. Simulation results show that the proposed reinforcement learning algorithm has good convergence performance and strong generalizability. Compared with traditional routing, the throughput is 8% higher, and the proposed method has load balancing characteristics.

一种基于业务需求与流量感知的卫星网络多路径路由算法

邢紫阳1,2,祁晖1,2,底晓强1,2,3,刘晋尧1,2,许睿1,2,陈静1,2,从立钢1,2
1吉林省网络与信息安全重点实验室,中国长春市,130022
2长春理工大学计算机科学技术学院,中国长春市,130022
3长春理工大学信息化中心,中国长春市,130022
摘要:随着低轨卫星制造和发射成本的降低,以及其覆盖范围大、数据传输速率高等优点,低轨卫星已成为空地网络数据传输的重要组成部分。但受地理位置及人们生活习惯等因素影响,用户对数据需求差异会造成网络流量不均衡,可能导致网络拥塞进而影响数据传输。传统卫星网络获取网络信息收敛慢,无法细粒度收集全局网络信息,不利于计算最优路由。多业务请求无法满足服务质量要求。本文将人工智能技术应用于低轨卫星网络,利用软件定义网络获取全局网络信息,感知网络流量,通过强化学习在线制定综合决策,实时更新最优路由策略。仿真结果表明,所提强化学习算法有良好收敛性和较强泛化能力。与传统路由相比,本文算法吞吐量提高了8%,且具有负载均衡性。

关键词:软件定义网络(SDN);快速用户数据报协议互联网连接(QUIC);强化学习;Sketch;多业务需求;卫星网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arfeen A, Uddin R, 2020. Quality of experience-based optimization of satellite Internet-at-sea using WAN accelerators. Int J Satell Commun Netw, 38(6):527-556.

[2]Bujari A, Luglio M, Palazzi CE, et al., 2020. A virtual PEP for web optimization over a satellite-terrestrial backhaul. IEEE Commun Mag, 58(10):42-48.

[3]Chen Q, Yang L, Guo DK, et al., 2022. LEO satellite networks: when do all shortest distance paths belong to minimum hop path set. IEEE Trans Aerosp Electron Syst, 58(4):3730-3734.

[4]Gao K, Xu CQ, Qin JR, et al., 2019. QoS-driven path selection for MPTCP: a scalable SDN-assisted approach. Proc IEEE Wireless Communications and Networking Conf, p.1-6.

[5]Han C, Huo LY, Tong XH, et al., 2020. Spatial anti-jamming scheme for Internet of satellites based on the deep reinforcement learning and Stackelberg game. IEEE Trans Veh Technol, 69(5):5331-5342.

[6]Huo LW, Jiang DD, Zhu XN, et al., 2022. A SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. Int J Commun Syst, 35(12):e4092.

[7]Jia ZY, Sheng M, Li JD, et al., 2020. LEO-satellite-assisted UAV: joint trajectory and data collection for Internet of Remote Things in 6G aerial access networks. IEEE Int Things J, 8(12):9814-9826.

[8]Kuhn N, Michel F, Thomas L, et al., 2020. QUIC: opportunities and threats in SATCOM. Proc 10th Advanced Satellite Multimedia Systems Conf and the 16th Signal Processing for Space Communications Workshop, p.1-7.

[9]Langley A, Riddoch A, Wilk A, et al., 2017. The QUIC transport protocol: design and Internet-scale deployment. Proc Conf of the ACM Special Interest Group on Data Communication, p.183-196.

[10]Li X, Tang FL, Zhu YM, et al., 2022. Processing-while-transmitting: cost-minimized transmission in SDN-based STINs. IEEE/ACM Trans Netw, 30(1):243-256.

[11]Liu D, Zhang JK, Cui JJ, et al., 2022. Deep learning aided routing for space-air-ground integrated networks relying on real satellite, flight, and shipping data. IEEE Wirel Commun, 29(2):177-184.

[12]Liu JH, Zhao BK, Xin Q, et al., 2021. DRL-ER: an intelligent energy-aware routing protocol with guaranteed delay bounds in satellite mega-constellations. IEEE Trans Netw Sci Eng, 8(4):2872-2884.

[13]Liu LT, Shen YL, Zeng SG, et al., 2021. FO-Sketch: a fast oblivious sketch for secure network measurement service in the cloud. Electronics, 10(16):2020.

[14]Liu ZG, Zhu J, Zhang JM, et al., 2020. Routing algorithm design of satellite network architecture based on SDN and ICN. Int J Satell Commun Netw, 38(1):1-15.

[15]Mogensen RS, Markmoller C, Madsen TK, et al., 2019. Selective redundant MP-QUIC for 5G mission critical wireless applications. Proc IEEE 89th Vehicular Technology Conf, p.1-5.

[16]Murua J, Reviriego P, 2020. Faking elephant flows on the count min sketch. IEEE Netw Lett, 2(4):199-202.

[17]Oroojlooyjadid A, Nazari M, Snyder LV, et al., 2022. A deep Q-network for the beer game: deep reinforcement learning for inventory optimization. Manuf Ser Oper Manag, 24(1):285-304.

[18]Rabitsch A, Hurtig P, Brunstrom A, 2018. A stream-aware multipath QUIC scheduler for heterogeneous paths. Proc Workshop on the Evolution, Performance, and Interoperability of QUIC, p.29-35.

[19]Shi H, Zhang L, Zuo XT, et al., 2021. Multipath deadline-aware transport proxy for space network. IEEE Int Comput, 25(6):51-57.

[20]Tang L, Huang Q, Lee PPC, 2019. MV-Sketch: a fast and compact invertible sketch for heavy flow detection in network data streams. Proc IEEE INFOCOM Conf on Computer Communications, p.2026-2034.

[21]Wang F, Jiang DD, Qi S, et al., 2021. An Adaboost based link planning scheme in space-air-ground integrated networks. Mob Netw Appl, 26(2):669-680.

[22]Wu Q, Chen X, Zhou Z, et al., 2021. Deep reinforcement learning with spatio-temporal traffic forecasting for data-driven base station sleep control. IEEE/ACM Trans Netw, 29(2):935-948.

[23]Xu JP, Ai B, 2021. Deep reinforcement learning for handover-aware MPTCP congestion control in space-ground integrated network of railways. IEEE Wirel Commun, 28(6):200-207.

[24]Ya D, Bin Q, Wei N, 2021. DW-Sketch: a sketch-based scheme for realizing multi-network measurement tasks. Proc 2nd Int Conf on Computer Communication and Network Security, p.191-195.

[25]Yang SY, Li HW, Wu Q, 2018. Performance analysis of QUIC protocol in integrated satellites and terrestrial networks. Proc 14th Int Wireless Communications & Mobile Computing Conf, p.1425-1430.

[26]Yang WJ, Shu SJ, Cai L, et al., 2021. MM-QUIC: mobility-aware multipath QUIC for satellite networks. Proc 17th Int Conf on Mobility, Sensing and Networking, p.608-615.

[27]Yu ML, Jose L, Miao R, 2013. Software defined traffic measurement with OpenSketch. Proc 10th USENIX Conf on Networked Systems Design and Implementation, p.29-42.

[28]Zhang R, Liu J, Yang D, et al., 2020. A survey on satellite networks based on software-defined networking. Front Data Comput, 2(3):3-17.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE