Full Text:   <2870>

Summary:  <180>

CLC number: 

On-line Access: 2023-07-03

Received: 2022-11-03

Revision Accepted: 2023-07-03

Crosschecked: 2023-03-16

Cited: 0

Clicked: 829

Citations:  Bibtex RefMan EndNote GB/T7714


Xiuping Li


Liangjie QIU


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.6 P.927-934


Wideband circular-polarized transmitarray for generating a high-purity vortex beam

Author(s):  Liangjie QIU, Xiuping LI, Zihang QI, Wenyu ZHAO, Yuhan HUANG

Affiliation(s):  State Key Laboratory of Information Photonics and Optical Communications, Beijing 100876, China; more

Corresponding email(s):   xpli@bupt.edu.cn

Key Words: 

Share this article to: More <<< Previous Article|

Liangjie QIU, Xiuping LI, Zihang QI, Wenyu ZHAO, Yuhan HUANG. Wideband circular-polarized transmitarray for generating a high-purity vortex beam[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(6): 927-934.

@article{title="Wideband circular-polarized transmitarray for generating a high-purity vortex beam",
author="Liangjie QIU, Xiuping LI, Zihang QI, Wenyu ZHAO, Yuhan HUANG",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Wideband circular-polarized transmitarray for generating a high-purity vortex beam
%A Liangjie QIU
%A Xiuping LI
%A Zihang QI
%A Wenyu ZHAO
%A Yuhan HUANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 6
%P 927-934
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200539

T1 - Wideband circular-polarized transmitarray for generating a high-purity vortex beam
A1 - Liangjie QIU
A1 - Xiuping LI
A1 - Zihang QI
A1 - Wenyu ZHAO
A1 - Yuhan HUANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 6
SP - 927
EP - 934
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200539

In this correspondence, a wideband circular-polarized (CP) transmitarray (TA) in the Ka-band is presented for generating a high-purity vortex beam. The proposed element is composed of two identical combinations separated by an air layer. The subwavelength structure and double-resonance characteristics ensure the stable phase shift of the element within the 1-dB transmission bandwidth of 28.4%. A square aperture TA fed by a horn antenna is fabricated and measured. Owing to the honeycomb arrangement of elements, the mode purity of l​​=​​−1 is >0.93 in a wide band from 28.5 to 38 GHz. The measured peak gain is 22.3 dBic, and the 3-dB axial ratio bandwidth is 27.6%. The performance of the proposed antenna demonstrates its potential for high-capacity wireless communication and high-quality radar imaging.


摘要:本文提出一款在Ka波段产生高纯度涡旋波束的宽带圆极化透射阵。为简化设计,所提出的透射单元由两个相同的组合构成,并用空气层将其隔开。亚波长结构以及双谐振特性确保了透射单元在28.4%的1-dB透射带宽内具有稳定的相移能力。基于此,加工测试了一款由喇叭天线馈电的方形口径透射阵。得益于蜂窝状布阵方式,所设计的透射阵可在28.5 GHz到38 GHz的宽带范围中辐射l=−1且模态纯度高于0.93的涡旋波束。测试的峰值增益为22.3 dBic,3-dB轴比带宽为27.6%。测试结果表明,本文提出的透射阵有潜力应用于高容量无线通信和高质量雷达成像方面。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Akram MR, Bai XD, Jin RH, et al., 2019. Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans Antenn Propag, 67(7):4650-4658.

[2]Akram MR, Ding GW, Chen K, et al., 2020. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv Mater, 32(12):1907308.

[3]Akram Z, Li XP, Qi ZH, et al., 2019. Wideband vortex beam reflectarray design using quarter-wavelength element. IEEE Antenn Wirel Propag Lett, 18(7):1458-1462.

[4]Allen L, Beijersbergen MW, Spreeuw RJC, et al., 1992. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A, 45(11):8185-8189.

[5]Bi F, Ba ZL, Wang X, 2018. Metasurface-based broadband orbital angular momentum generator in millimeter wave region. Opt Expr, 26(20):25693-25705.

[6]de Cos ME, Alvarez Y, Las-Heras F, 2011. Novel broadband artificial magnetic conductor with hexagonal unit cell. IEEE Antenn Wirel Propag Lett, 10:615-618.

[7]Huang HF, Li SN, 2019. High-efficiency planar reflectarray with small-size for OAM generation at microwave range. IEEE Antenn Wirel Propag Lett, 18(3):432-436.

[8]Huang YH, Li XP, Li QW, et al., 2019. Generation of broadband high-purity dual-mode OAM beams using a four-feed patch antenna: theory and implementation. Sci Rep, 9:12977.

[9]Huang YH, Li XP, Akram Z, et al., 2021. Generation of millimeter-wave nondiffracting airy OAM beam using a single-layer hexagonal lattice reflectarray. IEEE Antenn Wirel Propag Lett, 20(6):1093-1097.

[10]Jiang ZH, Kang L, Hong W, et al., 2018. Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness. Phys Rev Appl, 9(6):064009.

[11]Li WW, Zhang L, Yang SY, et al., 2020. A reconfigurable second-order OAM patch antenna with simple structure. IEEE Antenn Wirel Propag Lett, 19(9):1531-1535.

[12]Lin ZS, Ba ZL, Wang X, 2020. Broadband high-efficiency electromagnetic orbital angular momentum beam generation based on a dielectric metasurface. IEEE Photon J, 12(3):4600611.

[13]Liu HY, Liu K, Cheng YQ, et al., 2020. Microwave vortex imaging based on dual coupled OAM beams. IEEE Sens J, 20(2):806-815.

[14]Liu K, Cheng YQ, Yang ZC, et al., 2015. Orbital-angular-momentum-based electromagnetic vortex imaging. IEEE Antenn Wirel Propag Lett, 14:711-714.

[15]Ma JC, Song XY, Yao YC, et al., 2021. Research on the purity of orbital angular momentum beam generated by imperfect uniform circular array. IEEE Antenn Wirel Propag Lett, 20(6):968-972.

[16]Ran YZ, Cai T, Shi LH, et al., 2020. High-performance transmissive broadband vortex beam generator based on Pancharatnam–Berry metasurface. IEEE Access, 8:111802-111810.

[17]Shahmirzadi AV, Badamchi Z, Badamchi B, et al., 2021. Generating concentrically embedded spatially divided OAM carrying vortex beams using transmitarrays. IEEE Trans Antenn Propag, 69(12):8436-8448.

[18]Tamburini F, Mari E, Sponselli A, et al., 2012. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys, 14(3):033001.

[19]Veljovic MJ, Skrivervik AK, 2020. Circularly polarized transmitarray antenna for cubesat intersatellite links in K-band. IEEE Antenn Wirel Propag Lett, 19(10):1749-1753.

[20]Wang B, Liu WZ, Zhao MX, et al., 2020. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat Photon, 14(10):623-628.

[21]Wu GB, Chan KF, Qu SW, et al., 2020. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz. IEEE Trans Terahertz Sci Technol, 10(5):480-489.

[22]Wu YH, Kang L, Werner DH, 2022. Active quasi-BIC optical vortex generators for ultrafast switching. New J Phys, 24(3):033002.

[23]Wu Z, Zhang WX, Liu ZG, et al., 2005. Reduction of feed blockage in reflectarray by orthogonally polarized transformation. IEEE Antennas and Propagation Society Int Symp, p.325-328.

[24]Xu HX, Liu HW, Ling XH, et al., 2017. Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface. IEEE Trans Antenn Propag, 65(12):7378-7382.

[25]Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5:4876.

[26]Yao E, Franke-Arnold S, Courtial J, et al., 2006. Fourier relationship between angular position and optical orbital angular momentum. Opt Expr, 14(20):9071-9076.

[27]Zhang FH, Song Q, Yang GM, et al., 2019. Generation of wideband vortex beam with different OAM modes using third-order meta-frequency selective surface. Opt Expr, 27(24):34864-34875.

[28]Zhang FH, Yang GM, Jin YQ, 2020. Low-profile circularly polarized transmitarray for wide-angle beam control with a third-order meta-FSS. IEEE Trans Antenn Propag, 68(5):3586-3597.

[29]Zhang XL, Yang F, Xu SH, et al., 2020. Dual-layer transmit- array antenna with high transmission efficiency. IEEE Trans Antenn Propag, 68(8):6003-6012.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE