CLC number:
On-line Access: 2023-07-03
Received: 2022-11-03
Revision Accepted: 2023-07-03
Crosschecked: 2023-03-16
Cited: 0
Clicked: 1160
Citations: Bibtex RefMan EndNote GB/T7714
Liangjie QIU, Xiuping LI, Zihang QI, Wenyu ZHAO, Yuhan HUANG. Wideband circular-polarized transmitarray for generating a high-purity vortex beam[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(6): 927-934.
@article{title="Wideband circular-polarized transmitarray for generating a high-purity vortex beam",
author="Liangjie QIU, Xiuping LI, Zihang QI, Wenyu ZHAO, Yuhan HUANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="6",
pages="927-934",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200539"
}
%0 Journal Article
%T Wideband circular-polarized transmitarray for generating a high-purity vortex beam
%A Liangjie QIU
%A Xiuping LI
%A Zihang QI
%A Wenyu ZHAO
%A Yuhan HUANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 6
%P 927-934
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200539
TY - JOUR
T1 - Wideband circular-polarized transmitarray for generating a high-purity vortex beam
A1 - Liangjie QIU
A1 - Xiuping LI
A1 - Zihang QI
A1 - Wenyu ZHAO
A1 - Yuhan HUANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 6
SP - 927
EP - 934
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200539
Abstract: In this correspondence, a wideband circular-polarized (CP) transmitarray (TA) in the Ka-band is presented for generating a high-purity vortex beam. The proposed element is composed of two identical combinations separated by an air layer. The subwavelength structure and double-resonance characteristics ensure the stable phase shift of the element within the 1-dB transmission bandwidth of 28.4%. A square aperture TA fed by a horn antenna is fabricated and measured. Owing to the honeycomb arrangement of elements, the mode purity of l=−1 is >0.93 in a wide band from 28.5 to 38 GHz. The measured peak gain is 22.3 dBic, and the 3-dB axial ratio bandwidth is 27.6%. The performance of the proposed antenna demonstrates its potential for high-capacity wireless communication and high-quality radar imaging.
[1]Akram MR, Bai XD, Jin RH, et al., 2019. Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans Antenn Propag, 67(7):4650-4658.
[2]Akram MR, Ding GW, Chen K, et al., 2020. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv Mater, 32(12):1907308.
[3]Akram Z, Li XP, Qi ZH, et al., 2019. Wideband vortex beam reflectarray design using quarter-wavelength element. IEEE Antenn Wirel Propag Lett, 18(7):1458-1462.
[4]Allen L, Beijersbergen MW, Spreeuw RJC, et al., 1992. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A, 45(11):8185-8189.
[5]Bi F, Ba ZL, Wang X, 2018. Metasurface-based broadband orbital angular momentum generator in millimeter wave region. Opt Expr, 26(20):25693-25705.
[6]de Cos ME, Alvarez Y, Las-Heras F, 2011. Novel broadband artificial magnetic conductor with hexagonal unit cell. IEEE Antenn Wirel Propag Lett, 10:615-618.
[7]Huang HF, Li SN, 2019. High-efficiency planar reflectarray with small-size for OAM generation at microwave range. IEEE Antenn Wirel Propag Lett, 18(3):432-436.
[8]Huang YH, Li XP, Li QW, et al., 2019. Generation of broadband high-purity dual-mode OAM beams using a four-feed patch antenna: theory and implementation. Sci Rep, 9:12977.
[9]Huang YH, Li XP, Akram Z, et al., 2021. Generation of millimeter-wave nondiffracting airy OAM beam using a single-layer hexagonal lattice reflectarray. IEEE Antenn Wirel Propag Lett, 20(6):1093-1097.
[10]Jiang ZH, Kang L, Hong W, et al., 2018. Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness. Phys Rev Appl, 9(6):064009.
[11]Li WW, Zhang L, Yang SY, et al., 2020. A reconfigurable second-order OAM patch antenna with simple structure. IEEE Antenn Wirel Propag Lett, 19(9):1531-1535.
[12]Lin ZS, Ba ZL, Wang X, 2020. Broadband high-efficiency electromagnetic orbital angular momentum beam generation based on a dielectric metasurface. IEEE Photon J, 12(3):4600611.
[13]Liu HY, Liu K, Cheng YQ, et al., 2020. Microwave vortex imaging based on dual coupled OAM beams. IEEE Sens J, 20(2):806-815.
[14]Liu K, Cheng YQ, Yang ZC, et al., 2015. Orbital-angular-momentum-based electromagnetic vortex imaging. IEEE Antenn Wirel Propag Lett, 14:711-714.
[15]Ma JC, Song XY, Yao YC, et al., 2021. Research on the purity of orbital angular momentum beam generated by imperfect uniform circular array. IEEE Antenn Wirel Propag Lett, 20(6):968-972.
[16]Ran YZ, Cai T, Shi LH, et al., 2020. High-performance transmissive broadband vortex beam generator based on Pancharatnam–Berry metasurface. IEEE Access, 8:111802-111810.
[17]Shahmirzadi AV, Badamchi Z, Badamchi B, et al., 2021. Generating concentrically embedded spatially divided OAM carrying vortex beams using transmitarrays. IEEE Trans Antenn Propag, 69(12):8436-8448.
[18]Tamburini F, Mari E, Sponselli A, et al., 2012. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys, 14(3):033001.
[19]Veljovic MJ, Skrivervik AK, 2020. Circularly polarized transmitarray antenna for cubesat intersatellite links in K-band. IEEE Antenn Wirel Propag Lett, 19(10):1749-1753.
[20]Wang B, Liu WZ, Zhao MX, et al., 2020. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat Photon, 14(10):623-628.
[21]Wu GB, Chan KF, Qu SW, et al., 2020. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz. IEEE Trans Terahertz Sci Technol, 10(5):480-489.
[22]Wu YH, Kang L, Werner DH, 2022. Active quasi-BIC optical vortex generators for ultrafast switching. New J Phys, 24(3):033002.
[23]Wu Z, Zhang WX, Liu ZG, et al., 2005. Reduction of feed blockage in reflectarray by orthogonally polarized transformation. IEEE Antennas and Propagation Society Int Symp, p.325-328.
[24]Xu HX, Liu HW, Ling XH, et al., 2017. Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface. IEEE Trans Antenn Propag, 65(12):7378-7382.
[25]Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5:4876.
[26]Yao E, Franke-Arnold S, Courtial J, et al., 2006. Fourier relationship between angular position and optical orbital angular momentum. Opt Expr, 14(20):9071-9076.
[27]Zhang FH, Song Q, Yang GM, et al., 2019. Generation of wideband vortex beam with different OAM modes using third-order meta-frequency selective surface. Opt Expr, 27(24):34864-34875.
[28]Zhang FH, Yang GM, Jin YQ, 2020. Low-profile circularly polarized transmitarray for wide-angle beam control with a third-order meta-FSS. IEEE Trans Antenn Propag, 68(5):3586-3597.
[29]Zhang XL, Yang F, Xu SH, et al., 2020. Dual-layer transmit- array antenna with high transmission efficiency. IEEE Trans Antenn Propag, 68(8):6003-6012.
Open peer comments: Debate/Discuss/Question/Opinion
<1>