Full Text:   <798>

Summary:  <156>

CLC number: TP183

On-line Access: 2024-07-30

Received: 2023-05-23

Revision Accepted: 2023-07-21

Crosschecked: 2024-07-30

Cited: 0

Clicked: 1143

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ran TIAN

https://orcid.org/0000-0003-4435-580X

Yanxing LIU

https://orcid.org/0000-0002-0554-3683

Pulun GAO

https://orcid.org/0009-0001-8889-8227

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.7 P.988-1002

http://doi.org/10.1631/FITEE.2300369


A privacy-preserving vehicle trajectory clustering framework


Author(s):  Ran TIAN, Pulun GAO, Yanxing LIU

Affiliation(s):  College of Computer Science & Engineering, Northwest Normal University, Lanzhou 730070, China

Corresponding email(s):   tianran@nwnu.edu.cn, 202031603111@nwnu.edu.cn, lyanxing@nwnu.edu.cn

Key Words:  Privacy protection, Variational autoencoder, Improved K-means, Vehicle trajectory clustering


Ran TIAN, Pulun GAO, Yanxing LIU. A privacy-preserving vehicle trajectory clustering framework[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(7): 988-1002.

@article{title="A privacy-preserving vehicle trajectory clustering framework",
author="Ran TIAN, Pulun GAO, Yanxing LIU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="7",
pages="988-1002",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300369"
}

%0 Journal Article
%T A privacy-preserving vehicle trajectory clustering framework
%A Ran TIAN
%A Pulun GAO
%A Yanxing LIU
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 7
%P 988-1002
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300369

TY - JOUR
T1 - A privacy-preserving vehicle trajectory clustering framework
A1 - Ran TIAN
A1 - Pulun GAO
A1 - Yanxing LIU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 7
SP - 988
EP - 1002
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300369


Abstract: 
As one of the essential tools for spatio‒temporal traffic data mining, vehicle trajectory clustering is widely used to mine the behavior patterns of vehicles. However, uploading original vehicle trajectory data to the server and clustering carry the risk of privacy leakage. Therefore, one of the current challenges is determining how to perform vehicle trajectory clustering while protecting user privacy. We propose a privacy-preserving vehicle trajectory clustering framework and construct a vehicle trajectory clustering model (IKV) based on the variational autoencoder (VAE) and an improved K-means algorithm. In the framework, the client calculates the hidden variables of the vehicle trajectory and uploads the variables to the server; the server uses the hidden variables for clustering analysis and delivers the analysis results to the client. The IKV’ workflow is as follows: first, we train the VAE with historical vehicle trajectory data (when VAE’s decoder can approximate the original data, the encoder is deployed to the edge computing device); second, the edge device transmits the hidden variables to the server; finally, clustering is performed using improved K-means, which prevents the leakage of the vehicle trajectory. IKV is compared to numerous clustering methods on three datasets. In the nine performance comparison experiments, IKV achieves optimal or sub-optimal performance in six of the experiments. Furthermore, in the nine sensitivity analysis experiments, IKV not only demonstrates significant stability in seven experiments but also shows good robustness to hyperparameter variations. These results validate that the framework proposed in this paper is not only suitable for privacy-conscious production environments, such as carpooling tasks, but also adapts to clustering tasks of different magnitudes due to the low sensitivity to the number of cluster centers.

隐私保护下的车辆轨迹聚类方法研究

田冉,高普伦,刘颜星
西北师范大学计算机科学与工程学院,中国兰州市,730070
摘要:车辆轨迹聚类方法作为时空交通数据挖掘的重要工具之一,被广泛地运用于挖掘车辆的行为模式。但是如果直接将原始车辆轨迹数据上传到服务器并进行聚类则具有隐私泄露的风险。因此,针对在保护用户隐私的同时进行车辆轨迹聚类这一挑战,本文提出一种隐私保护下的车辆轨迹聚类框架,并构建了基于变分自编码器和改进K-means算法的车辆轨迹聚类模型(IKV)。在该框架中,客户端计算出车辆轨迹的隐藏变量并上传至服务端,服务端再利用隐藏变量计算出聚类结果,并将分析结果发放给各客户端。IKV的工作流程如下:首先利用历史车辆轨迹数据在变分自编码器上进行训练,当变分自编码器的解码器接近原始数据时,将变分自编码器的编码器部署到车辆端的边缘计算设备;其次由车辆端的编码器计算车辆本地轨迹数据的隐变量,并将隐变量上传至服务器端;最后在服务器端利用改进的K-means算法基于车辆上传的隐变量进行车辆轨迹聚类计算。在三个真实数据集上,我们将IKV与多种基准方法在多个评价指标上进行了比较。在9组性能对比实验中,IKV算法在6组中达到了最优或接近最优的性能水平。同时在9组敏感性分析实验中,该算法在7组实验中展现出了显著的稳定性和对参数变化的鲁棒性。这些结果验证了本文提出的框架不仅适用于注重隐私的生产环境,如拼车服务,而且由于其对聚簇数量的低敏感性,还能适应不同规模的聚类任务。

关键词:隐私保护;变分自编码器;改进K-means;车辆轨迹聚类

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Advani C, Bhaskar A, Haque MM, 2022. Bi-level clustering of vehicle trajectories for path choice set and its nested structure identification. Transp Res Part C Emerg Technol, 144:103895.

[2]Arif M, Chen JE, Wang GJ, et al., 2021. Privacy preserving and data publication for vehicular trajectories with differential privacy. Measurement, 173:108675.

[3]Atev S, Miller G, Papanikolopoulos NP, 2010. Clustering of vehicle trajectories. IEEE Trans Intell Transp Syst, 11(3):647-657.

[4]Benkert M, Gudmundsson J, Hübner F, et al., 2008. Reporting flock patterns. Comput Geomet, 41(3):111-125.

[5]Besse PC, Guillouet B, Loubes JM, et al., 2016. Review and perspective for distance-based clustering of vehicle trajectories. IEEE Trans Intell Transp Syst, 17(11):3306-3317.

[6]Bezdek JC, 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York, USA.

[7]Caliński T, Harabasz J, 1974. A dendrite method for cluster analysis. Commun Statist, 3(1):1-27.

[8]Chang LC, Chang FJ, Yang SN, et al., 2020. Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance. Nat Commun, 11(1):1983.

[9]Chen CM, Ye Z, Hu F, et al., 2021. Vehicle trajectory-clustering method based on road-network-sensitive features. J Intell Fuzzy Syst, 41(1):2357-2375.

[10]Cho K, Van Merriënboer B, Gulcehre C, et al., 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation.

[11]Davies DL, Bouldin DW, 1979. A cluster separation measure. IEEE Trans Patt Anal Mach Intell, PAMI-1(2):224-227.

[12]Dunn JC, 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern, 3(3):32-57.

[13]Gaffney S, Smyth P, 1999. Trajectory clustering with mixtures of regression models. Proc 5th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.63-72.

[14]Gariel M, Srivastava AN, Feron E, 2011. Trajectory clustering and an application to airspace monitoring. IEEE Trans Intell Transp Syst, 12(4):1511-1524.

[15]Gazdag A, Lestyán S, Remeli M, et al., 2023. Privacy pitfalls of releasing in-vehicle network data. Veh Commun, 39:100565.

[16]Guo MM, Jin XY, Pissinou N, et al., 2015. In-network trajectory privacy preservation. ACM Comput Surv, 48(2):23.

[17]Hong ZH, Chen Y, Mahmassani HS, et al., 2017. Commuter ride-sharing using topology-based vehicle trajectory clustering: methodology, application and impact evaluation. Transp Res Part C Emerg Technol, 85:573-590.

[18]Hong ZH, Chen Y, Mahmassani HS, 2018. Recognizing network trip patterns using a spatio-temporal vehicle trajectory clustering algorithm. IEEE Trans Intell Transp Syst, 19(8):2548-2557.

[19]Jin FM, Hua W, Francia M, et al., 2023. A survey and experimental study on privacy-preserving trajectory data publishing. IEEE Trans Knowl Data Eng, 35(6):5577-5596.

[20]Kluger Y, Basri R, Chang JT, et al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res, 13(4):703-716.

[21]Kong XP, Lu L, 2022. Privacy-preserved vehicular trajectory embedding federated learning and clustering. J Nanjing Norm Univ (Eng Technol Ed), 22(2):80-86 (in Chinese).

[22]Lu L, Lin Y, Wen Y, et al., 2023. Federated clustering for recognizing driving styles from private trajectories. Eng Appl Artif Intell, 118:105714.

[23]Ma Z, Zhang T, Liu XM, et al., 2019. Real-time privacy-preserving data release over vehicle trajectory. IEEE Trans Veh Technol, 68(8):8091-8102.

[24]MacQueen J, 1967. Some methods for classification and analysis of multivariate observations. Proc 5th Berkeley Symp on Mathematical Statistics and Probability, p.281-297.

[25]Ng AY, Jordan MI, Weiss Y, 2001. On spectral clustering: analysis and an algorithm. Proc 14th Int Conf on Neural Information Processing Systems: Natural and Synthetic, p.849-856.

[26]Oksanen J, Bergman C, Sainio J, et al., 2015. Methods for deriving and calibrating privacy-preserving heat maps from mobile sports tracking application data. J Transp Geogr, 48:135-144.

[27]Pan XL, Wang HP, Cheng XQ, et al., 2020. Online detection of anomaly behaviors based on multidimensional trajectories. Inform Fusion, 58:40-51.

[28]Park HS, Jun CH, 2009. A simple and fast algorithm for K-medoids clustering. Expert Syst Appl, 36(2):3336-3341.

[29]Rousseeuw PJ, 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math, 20:53-65.

[30]Sculley D, 2010. Web-scale k-means clustering. Proc 19th Int Conf on World Wide Web, p.1177-1178.

[31]Wang H, Xu ZQ, 2018. Differential privacy preserving method for trajectory clustering. J Huazhong Univ Sci Technol (Nat Sci Ed), 46(1):32-36 (in Chinese).

[32]Wang W, Xia F, Nie HS, et al., 2021. Vehicle trajectory clustering based on dynamic representation learning of Internet of Vehicles. IEEE Trans Intell Transp Syst, 22(6):3567-3576.

[33]Xie XW, Wu B, Hou BT, 2023. BEPHAP: a blockchain-based efficient privacy-preserving handover authentication protocol with key agreement for Internet of Vehicles. J Syst Archit, 138:102869.

[34]Xin Y, Xie ZQ, Yang J, 2017. The privacy preserving method for dynamic trajectory releasing based on adaptive clustering. Inform Sci, 378:131-143.

[35]Xu XH, Liu CS, Li JH, et al., 2022. Trajectory clustering for SVR-based time of arrival estimation. Ocean Eng, 259:111930.

[36]Yi DW, Su JY, Liu CJ, et al., 2019. Trajectory clustering aided personalized driver intention prediction for intelligent vehicles. IEEE Trans Ind Inform, 15(6):3693-3702.

[37]Yu QY, Luo YL, Chen CM, et al., 2019. Trajectory similarity clustering based on multi-feature distance measurement. Appl Intell, 49(6):2315-2338.

[38]Zhang T, Ramakrishnan R, Livny M, 1996. BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec, 25(2):103-114.

[39]Zhao XD, Pi DC, Chen JF, 2020. Novel trajectory privacy-preserving method based on clustering using differential privacy. Expert Syst Appl, 149:113241.

[40]Zheng Y, 2015. Trajectory data mining. ACM Trans Intell Syst Technol, 6(3):29.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE