CLC number: TP391.41
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 16
Clicked: 4820
WANG Hong-yu. A HIGHLY SCALABLE STRUCTURE FOR WDM MULTIHOP LIGHTWAVE NETWORKS[J]. Journal of Zhejiang University Science A, 2000, 1(3): 254-263.
@article{title="A HIGHLY SCALABLE STRUCTURE FOR WDM MULTIHOP LIGHTWAVE NETWORKS",
author="WANG Hong-yu",
journal="Journal of Zhejiang University Science A",
volume="1",
number="3",
pages="254-263",
year="2000",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2000.0254"
}
%0 Journal Article
%T A HIGHLY SCALABLE STRUCTURE FOR WDM MULTIHOP LIGHTWAVE NETWORKS
%A WANG Hong-yu
%J Journal of Zhejiang University SCIENCE A
%V 1
%N 3
%P 254-263
%@ 1869-1951
%D 2000
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2000.0254
TY - JOUR
T1 - A HIGHLY SCALABLE STRUCTURE FOR WDM MULTIHOP LIGHTWAVE NETWORKS
A1 - WANG Hong-yu
J0 - Journal of Zhejiang University Science A
VL - 1
IS - 3
SP - 254
EP - 263
%@ 1869-1951
Y1 - 2000
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2000.0254
Abstract: In this paper, the author proposes a new virtual topology, referred to as fully connected cubic network (FCCN), for the wavelength division multiplexing (WDM) multihop lightwave network. The FCCN is a multi-level, highly scalable and modular architecture. An m level FCCN is constructed by "fully connecting" 8 (m-1)-FCCNs. The FCCN satisfies very well all the design requirements for WDM lightwave networks. The nodal degree is no more than four, and independent of the network size. Both the diameter and the average hop distance are in the order of (Number of nodes)1/3. Owing to the highly scalable structure, the routing algorithm proposed in this paper is very simple to implement. Wavelengths reuse technique can be applied with high efficiency to FCCN.
[1]Banerjee, D., Mukherjee, B., and Ramamurthy, S., 1994. The Multidimensional Torus: Analysis of Average Hop Distance and Application as Multihop Lightwave Network, Proc. ICC'94, IEEE Communication Society Press, Los Alamitos, California. p. 1675-1680.
[2]Banerjee, S. and Sarkar, D., 1994. Hypercube Connected Rings: A Fault-Tolerant and Scalable Architecture for Virtual Lightwave Network Topology. IEEE Infocom'94, IEEE Computer Society Press, Los Alamitos, California, p. 1236-1243.
[3]Bhuyan, L. N. and Agrawal, D. P., 1984. Generalized hypercube and hypercube structure for a computer network. IEEE Trans. Computers, c-33(4): 323-333.
[4]Brackett, C. A.,1990. Dense wavelength division multiplexing networks: principles and applications. IEEE J. Sel. Communications, 8(6): 948-964.
[5]Chung, T. Y. and Agrawal, D. P., 1993. Design and analysis of multidimensional manhattan street networks. IEEE Trans. Communications, 41(2): 295-298.
[6]Gerla, M. and Fratta, L., 1988. Tree structure fiber optics MANs. IEEE J. Sel. Communications, 6(6): 934-943.
[7]Gerla, M., Kannan B. and Palnati, P., 1995. Protocols for an Optical Star Interconnection for High Speed Mesh Networks. IEEE Infocom'95, IEEE Computer Society Press, Los Alamitos, California. p. 146-153.
[8]Hluchyj, M. G. and Karol, M. K.,1991. Shufflenet: An application of generalized perfect shuffles to multihop lightwave network. Journal of Lightwave Technology, 9(10): 1386-1397.
[9]Laude, J. P., 1993. Wavelength Division Multiplexing, Prentice Hall International, New York, p. 262.
[10]Li, B. and Ganz, A., 1992. Virtual Topologies for WDM Star LANs: The Regular Structures Approach," IEEE Infocom'92, IEEE Computer Society Press, Los Alamitos, California. p. 2134-2143.
[11]Maxemchuk, N. F.,1985. Regular mesh topologies in local and metropolitan area networks. AT & T Tech. J., 64: 1659-1686.
[12]Mukherjee, B., 1992. WDM-based local lightwave networks part 2: Multihop systems. IEEE Network, 6(4): 20-32.
[13]Mukherjee, B.,1992. WDM-based local lightwave networks part 1: single-hop systems, IEEE Network, 6(3): 12-27.
[14]Panchapakesan, G. and Sengupta, A., 1995. A Multihop Optical Network Topology Using Kautz Digraphs. IEEE Infocom'95, IEEE Computer Society Press, Los Alamitos, California. p. 675-682.
[15]Park, S.W. and Kim, Y.C., 1995. Virtual Topology for WDM Multihop Lightwave Networks. IEEE Infocom'95, IEEE Computer Society Press, Los Alamitos, California. p. 701-708.
[16]Saad, Y. and Schultz, M. H., 1988. Topological Properties of Hypercubes. IEEE Trans. Computers, 37(7): 867-872.
[17]Sivarajan, K. and Ramaswami, R., 1991. Multihop Lightwave Networks Based on de Bruijn Graphs. IEEE Infocom'91, IEEE Computer Society Press, Los Alamitos, California. p. 1001-1011.
Open peer comments: Debate/Discuss/Question/Opinion
<1>